/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #ifdef PADDLE_WITH_NGRAPH #pragma once #include #include #include #include "ngraph/ngraph.hpp" namespace paddle { namespace platform { std::shared_ptr Nhwc2Nchw(std::shared_ptr in) { auto in_shape = in->get_shape(); in_shape[0] = in->get_shape()[0]; in_shape[1] = in->get_shape()[3]; in_shape[2] = in->get_shape()[1]; in_shape[3] = in->get_shape()[2]; ngraph::AxisVector axis_vec = {0, 3, 1, 2}; return std::make_shared(in, axis_vec, in_shape); } std::shared_ptr Nchw2Nhwc(std::shared_ptr in) { auto in_shape = in->get_shape(); in_shape[0] = in->get_shape()[0]; in_shape[1] = in->get_shape()[2]; in_shape[2] = in->get_shape()[3]; in_shape[3] = in->get_shape()[1]; ngraph::AxisVector axis_vec = {0, 2, 3, 1}; return std::make_shared(in, axis_vec, in_shape); } ngraph::Shape FlattenTo1d(ngraph::Shape sh, int num) { auto x1 = std::accumulate(std::begin(sh), std::end(sh) + num, 1, std::multiplies()); size_t x1_l = (size_t)x1; return ngraph::Shape{x1_l}; } ngraph::Shape FlattenTo2d(ngraph::Shape sh, int num) { auto x1 = std::accumulate(std::begin(sh), std::begin(sh) + num, 1, std::multiplies()); auto x2 = std::accumulate(std::begin(sh) + num, std::end(sh), 1, std::multiplies()); size_t x1_l = static_cast(x1); size_t x2_l = static_cast(x2); return ngraph::Shape{x1_l, x2_l}; } std::shared_ptr NgReshaper(std::shared_ptr input, ngraph::Shape shape) { std::vector input_order(input->get_shape().size()); std::iota(std::begin(input_order), std::end(input_order), 0); return std::make_shared( input, ngraph::AxisVector(input_order), shape); } std::shared_ptr GetNode( const std::shared_ptr& op, const std::string name, const paddle::framework::VariableNameMap& var_map, std::shared_ptr< std::unordered_map>> ngb_node_map) { auto& var_names = var_map.at(name); PADDLE_ENFORCE_EQ(var_names.size(), 1, "op %s name %s expects one associated var", op->Type(), name); if (ngb_node_map->find(var_names[0]) != ngb_node_map->end()) { return (*ngb_node_map)[var_names[0]]; } else { return nullptr; } } std::shared_ptr GetInputNode( const std::shared_ptr& op, const std::string name, std::shared_ptr< std::unordered_map>> ngb_node_map) { return GetNode(op, name, op->Inputs(), ngb_node_map); } std::shared_ptr GetOutputNode( const std::shared_ptr& op, const std::string name, std::shared_ptr< std::unordered_map>> ngb_node_map) { return GetNode(op, name, op->Outputs(), ngb_node_map); } void SetOutputNode( const std::shared_ptr& op, const std::string name, std::shared_ptr node, std::shared_ptr< std::unordered_map>> ngb_node_map) { auto& var_names = op->Outputs().at(name); if (var_names.size() == 1) { /* */ auto dummy_out = GetOutputNode(op, name, ngb_node_map); if (dummy_out && dummy_out->get_shape() != node->get_shape()) { node = NgReshaper(node, dummy_out->get_shape()); } if (dummy_out && dummy_out->get_element_type() != node->get_element_type()) { node = std::make_shared( node, dummy_out->get_element_type()); } (*ngb_node_map)[var_names[0]] = node; } else if (var_names.size() == 0) { (*ngb_node_map)[""] = node; } else { PADDLE_THROW("name %s has more than 1 var_names.", name); } } bool HasOutput(const std::shared_ptr& op, const std::string name) { auto& outputs = op->Outputs(); if (outputs.find(name) == outputs.end()) return false; return outputs.at(name).size() > 0; } inline void GetMidDims(const ngraph::Shape& x_shape, const ngraph::Shape& y_shape, int axis, int* pre, int* n, int* post) { *pre = 1; *n = 1; *post = 1; for (int i = 0; i < axis; ++i) { (*pre) *= x_shape[i]; } for (size_t i = 0; i < y_shape.size(); ++i) { PADDLE_ENFORCE_EQ(x_shape[i + axis], y_shape[i], "Broadcast dimension mismatch."); (*n) *= y_shape[i]; } for (size_t i = axis + y_shape.size(); i < x_shape.size(); ++i) { (*post) *= x_shape[i]; } } inline void TrimTrailingSingularDims(ngraph::Shape* shape) { // Remove trailing dimensions of size 1 for y auto actual_shape_size = shape->size(); for (; actual_shape_size != 0; --actual_shape_size) { if ((*shape)[actual_shape_size - 1] != 1) { break; } else { shape->pop_back(); } } } } // namespace platform } // namespace paddle #endif