# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # The code is based on # https://github.com/facebookresearch/detectron2/blob/main/detectron2/modeling/anchor_generator.py import math import paddle import paddle.nn as nn from ppdet.core.workspace import register __all__ = ['AnchorGenerator', 'RetinaAnchorGenerator'] @register class AnchorGenerator(nn.Layer): """ Generate anchors according to the feature maps Args: anchor_sizes (list[float] | list[list[float]]): The anchor sizes at each feature point. list[float] means all feature levels share the same sizes. list[list[float]] means the anchor sizes for each level. The sizes stand for the scale of input size. aspect_ratios (list[float] | list[list[float]]): The aspect ratios at each feature point. list[float] means all feature levels share the same ratios. list[list[float]] means the aspect ratios for each level. strides (list[float]): The strides of feature maps which generate anchors offset (float): The offset of the coordinate of anchors, default 0. """ def __init__(self, anchor_sizes=[32, 64, 128, 256, 512], aspect_ratios=[0.5, 1.0, 2.0], strides=[16.0], variance=[1.0, 1.0, 1.0, 1.0], offset=0.): super(AnchorGenerator, self).__init__() self.anchor_sizes = anchor_sizes self.aspect_ratios = aspect_ratios self.strides = strides self.variance = variance self.cell_anchors = self._calculate_anchors(len(strides)) self.offset = offset def _broadcast_params(self, params, num_features): if not isinstance(params[0], (list, tuple)): # list[float] return [params] * num_features if len(params) == 1: return list(params) * num_features return params def generate_cell_anchors(self, sizes, aspect_ratios): anchors = [] for size in sizes: area = size**2.0 for aspect_ratio in aspect_ratios: w = math.sqrt(area / aspect_ratio) h = aspect_ratio * w x0, y0, x1, y1 = -w / 2.0, -h / 2.0, w / 2.0, h / 2.0 anchors.append([x0, y0, x1, y1]) return paddle.to_tensor(anchors, dtype='float32') def _calculate_anchors(self, num_features): sizes = self._broadcast_params(self.anchor_sizes, num_features) aspect_ratios = self._broadcast_params(self.aspect_ratios, num_features) cell_anchors = [ self.generate_cell_anchors(s, a) for s, a in zip(sizes, aspect_ratios) ] [ self.register_buffer( t.name, t, persistable=False) for t in cell_anchors ] return cell_anchors def _create_grid_offsets(self, size, stride, offset): grid_height, grid_width = size[0], size[1] shifts_x = paddle.arange( offset * stride, grid_width * stride, step=stride, dtype='float32') shifts_y = paddle.arange( offset * stride, grid_height * stride, step=stride, dtype='float32') shift_y, shift_x = paddle.meshgrid(shifts_y, shifts_x) shift_x = paddle.reshape(shift_x, [-1]) shift_y = paddle.reshape(shift_y, [-1]) return shift_x, shift_y def _grid_anchors(self, grid_sizes): anchors = [] for size, stride, base_anchors in zip(grid_sizes, self.strides, self.cell_anchors): shift_x, shift_y = self._create_grid_offsets(size, stride, self.offset) shifts = paddle.stack((shift_x, shift_y, shift_x, shift_y), axis=1) shifts = paddle.reshape(shifts, [-1, 1, 4]) base_anchors = paddle.reshape(base_anchors, [1, -1, 4]) anchors.append(paddle.reshape(shifts + base_anchors, [-1, 4])) return anchors def forward(self, input): grid_sizes = [paddle.shape(feature_map)[-2:] for feature_map in input] anchors_over_all_feature_maps = self._grid_anchors(grid_sizes) return anchors_over_all_feature_maps @property def num_anchors(self): """ Returns: int: number of anchors at every pixel location, on that feature map. For example, if at every pixel we use anchors of 3 aspect ratios and 5 sizes, the number of anchors is 15. For FPN models, `num_anchors` on every feature map is the same. """ return len(self.cell_anchors[0]) @register class RetinaAnchorGenerator(AnchorGenerator): def __init__(self, octave_base_scale=4, scales_per_octave=3, aspect_ratios=[0.5, 1.0, 2.0], strides=[8.0, 16.0, 32.0, 64.0, 128.0], variance=[1.0, 1.0, 1.0, 1.0], offset=0.0): anchor_sizes = [] for s in strides: anchor_sizes.append([ s * octave_base_scale * 2**(i/scales_per_octave) \ for i in range(scales_per_octave)]) super(RetinaAnchorGenerator, self).__init__( anchor_sizes=anchor_sizes, aspect_ratios=aspect_ratios, strides=strides, variance=variance, offset=offset)