# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import unittest import numpy as np import math from op_test import OpTest np.random.seed(100) def find_latest_set(num): return 1 + int(math.floor(math.log(num, 2))) class CodeTable(object): def __init__(self, num_classes, code): self.c = num_classes + code def cal_index(self, bit): return (self.c >> (bit + 1)) - 1 def get_length(self): return find_latest_set(self.c) - 1 def cal_bit(self, bit): return self.c & (1 << bit) def hsigmoid(x, w, label, bias, num_classes): batch_size = x.shape[0] code_length = find_latest_set(num_classes - 1) code_table = [0 for _ in range(code_length)] pre_output = np.zeros((batch_size, code_length)) pre_sum = np.zeros((batch_size, 1)) out = np.zeros((batch_size, 1)).astype("float32") for i in range(batch_size): code_table = CodeTable(num_classes, label[i]) length = code_table.get_length() for j in range(length): idx = code_table.cal_index(j) pre_output[i][j] += bias[0][idx] for i in range(batch_size): code_table = CodeTable(num_classes, label[i]) length = code_table.get_length() for j in range(length): idx = code_table.cal_index(j) pre_output[i][j] += np.dot(w[idx], x[i]) # clip[-40.0, 40.0] pre_output = np.clip(pre_output, -40.0, 40.0) # out(i, 0) = \sum_j bit(i, j) * preout(i, j) for i in range(batch_size): code_table = CodeTable(num_classes, label[i]) length = code_table.get_length() sum = 0.0 for j in range(length): if code_table.cal_bit(j): sum += pre_output[i][j] out[i] = -1.0 * sum # soft relu pre_output = np.log(1 + np.exp(pre_output)) pre_sum = pre_output.sum(1).reshape((batch_size, 1)) out += pre_sum return pre_output, out class TestHSigmoidOp(OpTest): def setUp(self): self.op_type = "hierarchical_sigmoid" num_classes = 6 feature_size = 8 batch_size = 4 x = np.random.random((batch_size, feature_size)).astype("float32") w = np.random.random((num_classes - 1, feature_size)).astype("float32") label = np.random.randint(0, num_classes, (batch_size, 1)) bias = np.random.random((1, num_classes - 1)).astype("float32") self.attrs = {'num_classes': num_classes} self.inputs = {'X': x, 'W': w, 'Label': label, 'Bias': bias} pre_output, out = hsigmoid(x, w, label, bias, num_classes) self.outputs = {'PreOut': pre_output, 'Out': out} def test_check_output(self): self.check_output() def test_check_grad(self): self.check_grad(['Bias', 'X', 'W'], ['Out'], no_grad_set=set('Label')) if __name__ == '__main__': unittest.main()