architecture: FasterRCNN use_gpu: true max_iters: 180000 log_iter: 50 save_dir: output snapshot_iter: 10000 pretrain_weights: https://paddlemodels.bj.bcebos.com/object_detection/dygraph/resnet50.pdparams metric: COCO weights: output/faster_rcnn_r50_1x/model_final num_classes: 81 open_debug: False # Model Achitecture FasterRCNN: # model anchor info flow anchor: AnchorRPN proposal: Proposal # model feat info flow backbone: ResNet rpn_head: RPNHead bbox_head: BBoxHead ResNet: depth: 50 norm_type: 'affine' freeze_at: 'res2' RPNHead: rpn_feat: name: RPNFeat feat_in: 1024 feat_out: 1024 anchor_per_position: 15 BBoxHead: bbox_feat: name: BBoxFeat roi_extractor: name: RoIExtractor resolution: 14 sampling_ratio: 0 spatial_scale: 0.0625 extractor_type: 'RoIAlign' feat_out: 512 AnchorRPN: anchor_generator: name: AnchorGeneratorRPN anchor_sizes: [32, 64, 128, 256, 512] aspect_ratios: [0.5, 1.0, 2.0] stride: [16.0, 16.0] variance: [1.0, 1.0, 1.0, 1.0] anchor_target_generator: name: AnchorTargetGeneratorRPN batch_size_per_im: 256 fg_fraction: 0.5 negative_overlap: 0.3 positive_overlap: 0.7 straddle_thresh: 0.0 Proposal: proposal_generator: name: ProposalGenerator min_size: 0.0 nms_thresh: 0.7 train_pre_nms_top_n: 12000 train_post_nms_top_n: 2000 infer_pre_nms_top_n: 12000 # used in infer infer_post_nms_top_n: 2000 # used in infer return_rois_num: True proposal_target_generator: name: ProposalTargetGenerator batch_size_per_im: 512 bbox_reg_weights: [[0.1, 0.1, 0.2, 0.2],] bg_thresh_hi: [0.5,] bg_thresh_lo: [0.0,] fg_thresh: [0.5,] fg_fraction: 0.25 bbox_post_process: # used in infer name: BBoxPostProcess # decode -> clip -> nms decode_clip_nms: name: DecodeClipNms keep_top_k: 100 score_threshold: 0.05 nms_threshold: 0.5 # Train LearningRate: base_lr: 0.01 schedulers: - !PiecewiseDecay gamma: 0.1 milestones: [120000, 160000] - !LinearWarmup start_factor: 0.3333333333333333 steps: 500 OptimizerBuilder: optimizer: momentum: 0.9 type: Momentum regularizer: factor: 0.0001 type: L2 _READER_: 'faster_reader.yml'