# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import paddle import paddle.nn as nn import paddle.nn.functional as F from ppdet.core.workspace import register, serializable from .resnet import ResNet, Blocks, BasicBlock, BottleNeck __all__ = ['SENet', 'SERes5Head'] @register @serializable class SENet(ResNet): __shared__ = ['norm_type'] def __init__(self, depth=50, variant='b', lr_mult_list=[1.0, 1.0, 1.0, 1.0], groups=1, base_width=64, norm_type='bn', norm_decay=0, freeze_norm=True, freeze_at=0, return_idx=[0, 1, 2, 3], dcn_v2_stages=[-1], std_senet=True, num_stages=4): """ Squeeze-and-Excitation Networks, see https://arxiv.org/abs/1709.01507 Args: depth (int): SENet depth, should be 50, 101, 152 variant (str): ResNet variant, supports 'a', 'b', 'c', 'd' currently lr_mult_list (list): learning rate ratio of different resnet stages(2,3,4,5), lower learning rate ratio is need for pretrained model got using distillation(default as [1.0, 1.0, 1.0, 1.0]). groups (int): group convolution cardinality base_width (int): base width of each group convolution norm_type (str): normalization type, 'bn', 'sync_bn' or 'affine_channel' norm_decay (float): weight decay for normalization layer weights freeze_norm (bool): freeze normalization layers freeze_at (int): freeze the backbone at which stage return_idx (list): index of the stages whose feature maps are returned dcn_v2_stages (list): index of stages who select deformable conv v2 std_senet (bool): whether use senet, default True num_stages (int): total num of stages """ super(SENet, self).__init__( depth=depth, variant=variant, lr_mult_list=lr_mult_list, ch_in=128, groups=groups, base_width=base_width, norm_type=norm_type, norm_decay=norm_decay, freeze_norm=freeze_norm, freeze_at=freeze_at, return_idx=return_idx, dcn_v2_stages=dcn_v2_stages, std_senet=std_senet, num_stages=num_stages) @register class SERes5Head(nn.Layer): def __init__(self, depth=50, variant='b', lr_mult=1.0, groups=1, base_width=64, norm_type='bn', norm_decay=0, dcn_v2=False, freeze_norm=False, std_senet=True): """ SERes5Head layer Args: depth (int): SENet depth, should be 50, 101, 152 variant (str): ResNet variant, supports 'a', 'b', 'c', 'd' currently lr_mult (list): learning rate ratio of SERes5Head, default as 1.0. groups (int): group convolution cardinality base_width (int): base width of each group convolution norm_type (str): normalization type, 'bn', 'sync_bn' or 'affine_channel' norm_decay (float): weight decay for normalization layer weights dcn_v2_stages (list): index of stages who select deformable conv v2 std_senet (bool): whether use senet, default True """ super(SERes5Head, self).__init__() ch_out = 512 ch_in = 256 if depth < 50 else 1024 na = NameAdapter(self) block = BottleNeck if depth >= 50 else BasicBlock self.res5 = Blocks( block, ch_in, ch_out, count=3, name_adapter=na, stage_num=5, variant=variant, groups=groups, base_width=base_width, lr=lr_mult, norm_type=norm_type, norm_decay=norm_decay, freeze_norm=freeze_norm, dcn_v2=dcn_v2, std_senet=std_senet) self.ch_out = ch_out * block.expansion @property def out_shape(self): return [ShapeSpec( channels=self.ch_out, stride=16, )] def forward(self, roi_feat): y = self.res5(roi_feat) return y