# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. # #Licensed under the Apache License, Version 2.0 (the "License"); #you may not use this file except in compliance with the License. #You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # #Unless required by applicable law or agreed to in writing, software #distributed under the License is distributed on an "AS IS" BASIS, #WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. #See the License for the specific language governing permissions and #limitations under the License. import unittest import numpy as np from op_test import OpTest class TestProximalAdagradOp(OpTest): def setUp(self): self.op_type = "proximal_adagrad" w = np.random.random((102, 105)).astype("float32") m = np.random.random((102, 105)).astype("float32") g = np.random.random((102, 105)).astype("float32") lr = np.array([0.1]).astype("float32") l1 = 0.1 l2 = 0.2 self.inputs = {'Param': w, 'Grad': g, 'Moment': m, 'LearningRate': lr} self.attrs = {'l1': l1, 'l2': l2} param_out = 0.0 moment_out = m + g * g prox_param = w - lr * g / np.sqrt(moment_out) if l1 > 0.0: x = np.abs(prox_param) - lr * l1 x[x < 0] = 0 param_out = np.sign(prox_param) * (x / (1.0 + lr * l2)) else: param_out = prox_param / (1.0 + lr * l2) self.outputs = {'ParamOut': param_out, 'MomentOut': moment_out} def test_check_output(self): self.check_output() if __name__ == "__main__": unittest.main()