# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. # #Licensed under the Apache License, Version 2.0 (the "License"); #you may not use this file except in compliance with the License. #You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # #Unless required by applicable law or agreed to in writing, software #distributed under the License is distributed on an "AS IS" BASIS, #WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. #See the License for the specific language governing permissions and #limitations under the License. import unittest import numpy import paddle.v2.fluid as fluid import paddle.v2.fluid.core as core from paddle.v2.fluid.op import Operator from paddle.v2.fluid.executor import Executor class TestGaussianRandomOp(unittest.TestCase): def setUp(self): self.op_type = "gaussian_random" self.inputs = {} self.attrs = {"shape": [1000, 784], "mean": .0, "std": 1., "seed": 10} self.outputs = ["Out"] def test_cpu(self): self.gaussian_random_test(place=fluid.CPUPlace()) def test_gpu(self): if core.is_compile_gpu(): self.gaussian_random_test(place=fluid.CUDAPlace(0)) def gaussian_random_test(self, place): program = fluid.Program() block = program.global_block() vout = block.create_var(name="Out") op = block.append_op( type=self.op_type, outputs={"Out": vout}, attrs=self.attrs) op.desc.infer_var_type(block.desc) op.desc.infer_shape(block.desc) fetch_list = [] for var_name in self.outputs: fetch_list.append(block.var(var_name)) exe = Executor(place) outs = exe.run(program, fetch_list=fetch_list) tensor = outs[0] self.assertAlmostEqual(numpy.mean(tensor), .0, delta=0.1) self.assertAlmostEqual(numpy.std(tensor), 1., delta=0.1) if __name__ == "__main__": unittest.main()