# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. # #Licensed under the Apache License, Version 2.0 (the "License"); #you may not use this file except in compliance with the License. #You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # #Unless required by applicable law or agreed to in writing, software #distributed under the License is distributed on an "AS IS" BASIS, #WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. #See the License for the specific language governing permissions and #limitations under the License. from __future__ import print_function import core import numpy import six.moves as six from framework import Variable, default_main_program __all__ = ['DataFeeder'] class DataToLoDTensorConverter(object): def __init__(self, place, lod_level, shape, dtype): self.place = place self.lod_level = lod_level self.shape = shape if dtype == core.DataType.FP32: self.dtype = 'float32' elif dtype == core.DataType.INT64: self.dtype = 'int64' elif dtype == core.DataType.FP64: self.dtype = 'float64' elif dtype == core.DataType.INT32: self.dtype = 'int32' else: raise ValueError("dtype must be any of [int32, float32, int64, " "float64]") self.data = [] self.lod = [] for i in six.range(lod_level): self.lod.append([0]) def feed(self, data): self._feed_impl_(data, self.lod, self.lod_level) def _feed_impl_(self, data, lod, lod_level): if lod_level == 0: self.data.append(data) else: cur_lod_len = len(data) lod[-1].append(lod[-1][-1] + cur_lod_len) for each_data in data: self._feed_impl_(each_data, lod[:-1], lod_level - 1) def done(self): arr = numpy.array(self.data, dtype=self.dtype).reshape(self.shape) t = core.LoDTensor() t.set(arr, self.place) if self.lod_level > 0: t.set_lod(self.lod) return t class DataFeeder(object): def __init__(self, feed_list, place, program=None): self.feed_dtypes = [] self.feed_names = [] self.feed_shapes = [] self.feed_lod_level = [] if program is None: program = default_main_program() for each_var in feed_list: if isinstance(each_var, basestring): each_var = program.block(0).var(each_var) if not isinstance(each_var, Variable): raise TypeError("Feed list should contain a list of variable") self.feed_dtypes.append(each_var.dtype) self.feed_names.append(each_var.name) shape = each_var.shape batch_size_dim = -1 for i, s in enumerate(shape): if s < 0: batch_size_dim = i break if batch_size_dim == -1: raise ValueError("Variable {0} must has a batch size dimension", each_var.name) self.feed_lod_level.append(each_var.lod_level) self.feed_shapes.append(shape) self.place = place def feed(self, iterable): converter = [] for lod_level, shape, dtype in six.zip( self.feed_lod_level, self.feed_shapes, self.feed_dtypes): converter.append( DataToLoDTensorConverter( place=self.place, lod_level=lod_level, shape=shape, dtype=dtype)) for each_sample in iterable: for each_converter, each_slot in six.zip(converter, each_sample): each_converter.feed(each_slot) ret_dict = {} for each_name, each_converter in six.zip(self.feed_names, converter): ret_dict[each_name] = each_converter.done() return ret_dict