# 服务端预测部署 `PaddleDetection`训练出来的模型可以使用[Serving](https://github.com/PaddlePaddle/Serving) 部署在服务端。 本教程以在COCO数据集上用`configs/yolov3/yolov3_darknet53_270e_coco.yml`算法训练的模型进行部署。 预训练模型权重文件为[yolov3_darknet53_270e_coco.pdparams](https://paddledet.bj.bcebos.com/models/yolov3_darknet53_270e_coco.pdparams) 。 ## 1. 首先验证模型 ``` python tools/infer.py -c configs/yolov3/yolov3_darknet53_270e_coco.yml --infer_img=demo/000000014439.jpg -o use_gpu=True weights=https://paddledet.bj.bcebos.com/models/yolov3_darknet53_270e_coco.pdparams --infer_img=demo/000000014439.jpg ``` ## 2. 安装 paddle serving 请参考[PaddleServing](https://github.com/PaddlePaddle/Serving/tree/v0.5.0) 中安装教程安装 ## 3. 导出模型 PaddleDetection在训练过程包括网络的前向和优化器相关参数,而在部署过程中,我们只需要前向参数,具体参考:[导出模型](https://github.com/PaddlePaddle/PaddleDetection/blob/release/2.0/docs/advanced_tutorials/deploy/EXPORT_MODEL.md) ``` python tools/export_model.py -c configs/yolov3/yolov3_darknet53_270e_coco.yml -o weights=weights/yolov3_darknet53_270e_coco.pdparams --export_serving_model=True ``` 以上命令会在`output_inference/`文件夹下生成一个`yolov3_darknet53_270e_coco`文件夹: ``` output_inference │ ├── yolov3_darknet53_270e_coco │ │ ├── infer_cfg.yml │ │ ├── model.pdiparams │ │ ├── model.pdiparams.info │ │ ├── model.pdmodel │ │ ├── serving_client │ │ │ ├── serving_client_conf.prototxt │ │ │ ├── serving_client_conf.stream.prototxt │ │ ├── serving_server │ │ │ ├── __model__ │ │ │ ├── __params__ │ │ │ ├── serving_server_conf.prototxt │ │ │ ├── serving_server_conf.stream.prototxt │ │ │ ├── ... ``` `serving_client`文件夹下`serving_client_conf.prototxt`详细说明了模型输入输出信息 `serving_client_conf.prototxt`文件内容为: ``` lient_conf.prototxt feed_var { name: "im_shape" alias_name: "im_shape" is_lod_tensor: false feed_type: 1 shape: 2 } feed_var { name: "image" alias_name: "image" is_lod_tensor: false feed_type: 1 shape: 3 shape: 608 shape: 608 } feed_var { name: "scale_factor" alias_name: "scale_factor" is_lod_tensor: false feed_type: 1 shape: 2 } fetch_var { name: "save_infer_model/scale_0.tmp_1" alias_name: "save_infer_model/scale_0.tmp_1" is_lod_tensor: true fetch_type: 1 shape: -1 } fetch_var { name: "save_infer_model/scale_1.tmp_1" alias_name: "save_infer_model/scale_1.tmp_1" is_lod_tensor: true fetch_type: 2 shape: -1 } ``` ## 4. 启动PaddleServing服务 ``` cd output_inference/yolov3_darknet53_270e_coco/ # GPU python -m paddle_serving_server_gpu.serve --model serving_server --port 9393 --gpu_ids 0 # CPU python -m paddle_serving_server.serve --model serving_server --port 9393 ``` ## 5. 测试部署的服务 准备`label_list.txt`文件 ``` # 进入到导出模型文件夹 cd output_inference/yolov3_darknet53_270e_coco/ # 将数据集对应的label_list.txt文件放到当前文件夹下 ``` 设置`prototxt`文件路径为`serving_client/serving_client_conf.prototxt` 。 设置`fetch`为`fetch=["save_infer_model/scale_0.tmp_1"])` 测试 ``` # 进入目录 cd output_inference/yolov3_darknet53_270e_coco/ # 测试代码 test_client.py 会自动创建output文件夹,并在output下生成`bbox.json`和`000000014439.jpg`两个文件 python ../../deploy/serving/test_client.py ../../demo/000000014439.jpg ```