worker_num: 2 TrainReader: inputs_def: fields: ['image', 'gt_bbox', 'gt_class', 'gt_score'] num_max_boxes: 50 sample_transforms: - DecodeImage: {to_rgb: True, with_mixup: True} - MixupImage: {alpha: 1.5, beta: 1.5} - ColorDistort: {} - RandomExpand: {fill_value: [123.675, 116.28, 103.53]} - RandomCrop: {} - RandomFlipImage: {is_normalized: false} - NormalizeBox: {} - PadBox: {num_max_boxes: 50} - BboxXYXY2XYWH: {} batch_transforms: - RandomShape: {sizes: [320, 352, 384, 416, 448, 480, 512, 544, 576, 608], random_inter: True} - NormalizeImage: {mean: [0.485, 0.456, 0.406], std: [0.229, 0.224, 0.225], is_scale: True, is_channel_first: false} - Permute: {to_bgr: false, channel_first: True} # Gt2YoloTarget is only used when use_fine_grained_loss set as true, # this operator will be deleted automatically if use_fine_grained_loss # is set as false - Gt2YoloTarget: {anchor_masks: [[6, 7, 8], [3, 4, 5], [0, 1, 2]], anchors: [[10, 13], [16, 30], [33, 23], [30, 61], [62, 45], [59, 119], [116, 90], [156, 198], [373, 326]], downsample_ratios: [32, 16, 8]} batch_size: 8 shuffle: true drop_last: true EvalReader: inputs_def: fields: ['image', 'im_size', 'im_id'] num_max_boxes: 50 sample_transforms: - DecodeImage: {to_rgb: True} - ResizeImage: {target_size: 608, interp: 2} - NormalizeImage: {mean: [0.485, 0.456, 0.406], std: [0.229, 0.224, 0.225], is_scale: True, is_channel_first: false} - PadBox: {num_max_boxes: 50} - Permute: {to_bgr: false, channel_first: True} batch_size: 1 drop_empty: false TestReader: inputs_def: image_shape: [3, 608, 608] fields: ['image', 'im_size', 'im_id'] sample_transforms: - DecodeImage: {to_rgb: True} - ResizeImage: {target_size: 608, interp: 2} - NormalizeImage: {mean: [0.485, 0.456, 0.406], std: [0.229, 0.224, 0.225], is_scale: True, is_channel_first: false} - Permute: {to_bgr: false, channel_first: True} batch_size: 1