# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import unittest import contextlib import numpy as np import paddle import paddle.fluid as fluid from paddle.fluid.framework import Program from paddle.fluid import core class LayerTest(unittest.TestCase): @classmethod def setUpClass(cls): cls.seed = 111 @classmethod def tearDownClass(cls): pass def _get_place(self, force_to_use_cpu=False): # this option for ops that only have cpu kernel if force_to_use_cpu: return core.CPUPlace() else: if core.is_compiled_with_cuda(): return core.CUDAPlace(0) return core.CPUPlace() @contextlib.contextmanager def static_graph(self): scope = fluid.core.Scope() program = Program() with fluid.scope_guard(scope): with fluid.program_guard(program): paddle.seed(self.seed) paddle.framework.random._manual_program_seed(self.seed) yield def get_static_graph_result(self, feed, fetch_list, with_lod=False, force_to_use_cpu=False): exe = fluid.Executor(self._get_place(force_to_use_cpu)) exe.run(fluid.default_startup_program()) return exe.run(fluid.default_main_program(), feed=feed, fetch_list=fetch_list, return_numpy=(not with_lod)) @contextlib.contextmanager def dynamic_graph(self, force_to_use_cpu=False): with fluid.dygraph.guard( self._get_place(force_to_use_cpu=force_to_use_cpu)): paddle.seed(self.seed) paddle.framework.random._manual_program_seed(self.seed) yield