/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include "ConvOp.h" #include "GemmFunctor.h" #include "Im2Col.h" #include "paddle/math/MemoryHandle.h" namespace paddle { /* * \brief Forward calculation of convolution. */ template class GemmConvFunction : public ConvFunctionBase { public: void init(const FuncConfig& config) override { ConvFunctionBase::init(config); } void check(const BufferArgs& inputs, const BufferArgs& outputs) override { const TensorShape& input = inputs[0].shape(); const TensorShape& filter = inputs[1].shape(); const TensorShape& output = outputs[0].shape(); checkShape(input, filter, output); } void calc(const BufferArgs& inputs, const BufferArgs& outputs) override { CHECK_EQ(numInputs_, inputs.size()); CHECK_EQ(numOutputs_, outputs.size()); check(inputs, outputs); // TODO(hedaoyuan): Need to define some index macros, // to avoid useing 0 and 1. const TensorShape& input = inputs[0].shape(); const TensorShape& filter = inputs[1].shape(); const TensorShape& output = outputs[0].shape(); real beta; if (outputs[0].getArgType() == ADD_TO) { beta = 1.0; } else { beta = 0.0; } size_t batchSize = input[0]; size_t inputChannels = input[1]; size_t inputHeight = input[2]; size_t inputWidth = input[3]; size_t filterHeight = getFilterHeight(filter); size_t filterWidth = getFilterWidth(filter); size_t outputChannels = output[1]; size_t outputHeight = output[2]; size_t outputWidth = output[3]; real* inputData = inputs[0].data(); real* filterData = inputs[1].data(); real* outputData = outputs[0].data(); bool needIm2col = isNeedIm2col(filter); TensorShape imShape = TensorShape({inputChannels / groups_, inputHeight, inputWidth}); TensorShape colShape; real* colData = NULL; if (needIm2col) { colShape = TensorShape({inputChannels / groups_, filterHeight, filterWidth, outputHeight, outputWidth}); resizeBuffer(colShape.getElements()); colData = reinterpret_cast(memory_->getBuf()); } Im2ColFunctor im2col; size_t inputOffset = imShape.getElements(); size_t outputOffset = (outputChannels / groups_) * outputHeight * outputWidth; size_t filterOffset = filter.getElements() / groups_; for (size_t i = 0; i < batchSize; i++) { for (size_t g = 0; g < groups_; g++) { if (needIm2col) { im2col(inputData + g * inputOffset, imShape, colData, colShape, strideH(), strideW(), paddingH(), paddingW(), dilationH(), dilationW()); } else { colData = inputData + g * inputOffset; } int M = outputChannels / groups_; int N = outputHeight * outputWidth; int K = inputChannels / groups_ * filterHeight * filterWidth; BlasGemm::compute(false, false, M, N, K, 1.0f, filterData + g * filterOffset, K, colData, N, beta, outputData + g * outputOffset, N); } inputData += inputChannels * inputHeight * inputWidth; outputData += outputChannels * outputHeight * outputWidth; } } }; #ifdef PADDLE_MOBILE_INFERENCE /* * \brief Forward calculation of convolution, optimized for mobile. */ template class GemmConvMobileFunction : public ConvFunctionBase { public: void init(const FuncConfig& config) override { ConvFunctionBase::init(config); } void check(const BufferArgs& inputs, const BufferArgs& outputs) override { const TensorShape& input = inputs[0].shape(); const TensorShape& filter = inputs[1].shape(); const TensorShape& output = outputs[0].shape(); checkShape(input, filter, output); } void calc(const BufferArgs& inputs, const BufferArgs& outputs) override { CHECK_EQ(numInputs_, inputs.size()); CHECK_EQ(numOutputs_, outputs.size()); check(inputs, outputs); // TODO(hedaoyuan): Need to define some index macros, // to avoid useing 0 and 1. const TensorShape& input = inputs[0].shape(); const TensorShape& filter = inputs[1].shape(); const TensorShape& output = outputs[0].shape(); real beta; if (outputs[0].getArgType() == ADD_TO) { beta = 1.0; } else { beta = 0.0; } size_t batchSize = input[0]; size_t inputChannels = input[1]; size_t inputHeight = input[2]; size_t inputWidth = input[3]; size_t filterHeight = getFilterHeight(filter); size_t filterWidth = getFilterWidth(filter); size_t outputChannels = output[1]; size_t outputHeight = output[2]; size_t outputWidth = output[3]; real* inputData = inputs[0].data(); real* filterData = inputs[1].data(); real* outputData = outputs[0].data(); real* colData = NULL; bool needIm2col = isNeedIm2col(filter); TensorShape imShape = TensorShape({inputChannels / groups_, inputHeight, inputWidth}); TensorShape colShape; // Max col matrix width 4096, Max col matrix size 4M. size_t outputHeightSteps = std::min(std::max(4096 / outputWidth, (size_t)1), outputHeight); size_t maxColWidth = outputHeightSteps * outputWidth; size_t channelSteps = std::min(std::max((1048576 / maxColWidth) / filterHeight * filterWidth, (size_t)1), inputChannels / groups_); size_t maxColHeight = channelSteps * filterHeight * filterWidth; if (needIm2col) { colShape = TensorShape({inputChannels / groups_, filterHeight, filterWidth, outputHeight, outputWidth}); resizeBuffer(maxColHeight * maxColWidth * sizeof(real)); colData = reinterpret_cast(memory_->getBuf()); } Im2ColMobileFunctor im2col; size_t inputOffset = imShape.getElements(); size_t outputOffset = (outputChannels / groups_) * outputHeight * outputWidth; size_t filterOffset = filter.getElements() / groups_; int nStride = outputHeight * outputWidth; int kStride = inputChannels / groups_ * filterHeight * filterWidth; for (size_t i = 0; i < batchSize; i++) { filterData = inputs[1].data(); for (size_t g = 0; g < groups_; g++) { if (needIm2col) { real beta_ = beta; for (size_t ic = 0; ic < inputChannels / groups_; ic += channelSteps) { int channels = std::min(inputChannels / groups_ - ic, channelSteps); for (size_t oh = 0; oh < outputHeight; oh += outputHeightSteps) { int height = std::min(outputHeight - oh, outputHeightSteps); int M = outputChannels / groups_; int N = height * outputWidth; int K = channels * filterHeight * filterWidth; // im2col im2col(inputData, imShape, colData, colShape, strideH(), strideW(), paddingH(), paddingW(), dilationH(), dilationW(), channels, oh, height, N); // gemm BlasGemm::compute( false, false, M, N, K, 1.0f, filterData + ic * filterHeight * filterWidth, kStride, colData, N, beta_, outputData + oh * outputWidth, nStride); } beta_ = 1.0; } } else { int M = outputChannels / groups_; int N = outputHeight * outputWidth; int K = inputChannels / groups_ * filterHeight * filterWidth; BlasGemm::compute(false, false, M, N, K, 1.0f, filterData, K, inputData, N, beta, outputData, N); } inputData += inputOffset; outputData += outputOffset; filterData += filterOffset; } } memory_.reset(); } }; #endif /* * \brief Backward input calculation of convolution. */ template class GemmConvGradInputFunction : public ConvFunctionBase { public: void init(const FuncConfig& config) override { ConvFunctionBase::init(config); } void check(const BufferArgs& inputs, const BufferArgs& outputs) override { const TensorShape& output = inputs[0].shape(); const TensorShape& filter = inputs[1].shape(); const TensorShape& input = outputs[0].shape(); checkShape(input, filter, output); } void calc(const BufferArgs& inputs, const BufferArgs& outputs) override { CHECK_EQ(numInputs_, inputs.size()); CHECK_EQ(numOutputs_, outputs.size()); check(inputs, outputs); // Since the implementation of Col2ImFunctor is ADD_TO, // this function only supports ADD_TO mode. CHECK_EQ(outputs[0].getArgType(), ADD_TO); const TensorShape& output = inputs[0].shape(); const TensorShape& filter = inputs[1].shape(); const TensorShape& input = outputs[0].shape(); size_t batchSize = input[0]; size_t inputChannels = input[1]; size_t inputHeight = input[2]; size_t inputWidth = input[3]; size_t filterHeight = getFilterHeight(filter); size_t filterWidth = getFilterWidth(filter); size_t outputChannels = output[1]; size_t outputHeight = output[2]; size_t outputWidth = output[3]; real* outputGrad = inputs[0].data(); real* filterData = inputs[1].data(); real* inputGrad = outputs[0].data(); bool needIm2col = isNeedIm2col(filter); TensorShape imShape = TensorShape({inputChannels / groups_, inputHeight, inputWidth}); TensorShape colShape; real* colData = NULL; if (needIm2col) { colShape = TensorShape({inputChannels / groups_, filterHeight, filterWidth, outputHeight, outputWidth}); resizeBuffer(colShape.getElements()); colData = reinterpret_cast(memory_->getBuf()); } Col2ImFunctor col2im; size_t inputOffset = imShape.getElements(); size_t outputOffset = (outputChannels / groups_) * outputHeight * outputWidth; size_t filterOffset = filter.getElements() / groups_; for (size_t i = 0; i < batchSize; i++) { for (size_t g = 0; g < groups_; g++) { int K = outputChannels / groups_; int N = outputHeight * outputWidth; int M = inputChannels / groups_ * filterHeight * filterWidth; real scale = 0.0f; if (!needIm2col) { colData = inputGrad + g * inputOffset; scale = 1.0f; } BlasGemm::compute(true, false, M, N, K, 1.0f, filterData + g * filterOffset, M, outputGrad + g * outputOffset, N, scale, colData, N); if (needIm2col) { col2im(inputGrad + g * inputOffset, imShape, colData, colShape, strideH(), strideW(), paddingH(), paddingW(), dilationH(), dilationW()); } } inputGrad += inputChannels * inputHeight * inputWidth; outputGrad += outputChannels * outputHeight * outputWidth; } } }; /* * \brief Backward filter calculation of convolution. */ template class GemmConvGradFilterFunction : public ConvFunctionBase { public: void init(const FuncConfig& config) override { ConvFunctionBase::init(config); } void check(const BufferArgs& inputs, const BufferArgs& outputs) override { const TensorShape& output = inputs[0].shape(); const TensorShape& input = inputs[1].shape(); const TensorShape& filter = outputs[0].shape(); checkShape(input, filter, output); } void calc(const BufferArgs& inputs, const BufferArgs& outputs) override { CHECK_EQ(numInputs_, inputs.size()); CHECK_EQ(numOutputs_, outputs.size()); check(inputs, outputs); const TensorShape& output = inputs[0].shape(); const TensorShape& input = inputs[1].shape(); const TensorShape& filter = outputs[0].shape(); real beta; if (outputs[0].getArgType() == ADD_TO) { beta = 1.0; } else { beta = 0.0; } size_t batchSize = input[0]; size_t inputChannels = input[1]; size_t inputHeight = input[2]; size_t inputWidth = input[3]; size_t filterHeight = getFilterHeight(filter); size_t filterWidth = getFilterWidth(filter); size_t outputChannels = output[1]; size_t outputHeight = output[2]; size_t outputWidth = output[3]; real* outputGrad = inputs[0].data(); real* inputData = inputs[1].data(); real* filterGrad = outputs[0].data(); bool needIm2col = isNeedIm2col(filter); TensorShape imShape = TensorShape({inputChannels / groups_, inputHeight, inputWidth}); TensorShape colShape; real* colData = NULL; if (needIm2col) { colShape = TensorShape({inputChannels / groups_, filterHeight, filterWidth, outputHeight, outputWidth}); resizeBuffer(colShape.getElements()); colData = reinterpret_cast(memory_->getBuf()); } Im2ColFunctor im2col; size_t inputOffset = imShape.getElements(); size_t outputOffset = (outputChannels / groups_) * outputHeight * outputWidth; size_t filterOffset = filter.getElements() / groups_; for (size_t i = 0; i < batchSize; i++) { for (size_t g = 0; g < groups_; g++) { if (needIm2col) { im2col(inputData + g * inputOffset, imShape, colData, colShape, strideH(), strideW(), paddingH(), paddingW(), dilationH(), dilationW()); } else { colData = inputData + g * inputOffset; } int M = outputChannels / groups_; int K = outputHeight * outputWidth; int N = inputChannels / groups_ * filterHeight * filterWidth; BlasGemm::compute(false, true, M, N, K, 1.0f, outputGrad + g * outputOffset, K, colData, K, i == 0 ? beta : 1.0f, filterGrad + g * filterOffset, N); } inputData += inputChannels * inputHeight * inputWidth; outputGrad += outputChannels * outputHeight * outputWidth; } } }; #ifdef PADDLE_MOBILE_INFERENCE REGISTER_TYPED_FUNC(GemmConv, CPU, GemmConvMobileFunction); #else REGISTER_TYPED_FUNC(GemmConv, CPU, GemmConvFunction); #endif REGISTER_TYPED_FUNC(GemmConvGradInput, CPU, GemmConvGradInputFunction); REGISTER_TYPED_FUNC(GemmConvGradFilter, CPU, GemmConvGradFilterFunction); #ifdef PADDLE_WITH_CUDA REGISTER_TYPED_FUNC(GemmConv, GPU, GemmConvFunction); REGISTER_TYPED_FUNC(GemmConvGradInput, GPU, GemmConvGradInputFunction); REGISTER_TYPED_FUNC(GemmConvGradFilter, GPU, GemmConvGradFilterFunction); #endif } // namespace paddle