# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import os, sys # add python path of PadleDetection to sys.path parent_path = os.path.abspath(os.path.join(__file__, *(['..'] * 2))) if parent_path not in sys.path: sys.path.append(parent_path) # ignore numba warning import warnings warnings.filterwarnings('ignore') import random import numpy as np import paddle import time from paddle.distributed import ParallelEnv from ppdet.core.workspace import load_config, merge_config, create from ppdet.utils.check import check_gpu, check_version, check_config from ppdet.utils.cli import ArgsParser from ppdet.utils.eval_utils import get_infer_results, eval_results from ppdet.utils.checkpoint import load_weight from ppdet.utils.logger import setup_logger logger = setup_logger('eval') def parse_args(): parser = ArgsParser() parser.add_argument( "--output_eval", default=None, type=str, help="Evaluation directory, default is current directory.") parser.add_argument( '--json_eval', action='store_true', default=False, help='') parser.add_argument( '--use_gpu', action='store_true', default=False, help='') args = parser.parse_args() return args def run(FLAGS, cfg, place): # Model main_arch = cfg.architecture model = create(cfg.architecture) # Init Model load_weight(model, cfg.weights) # Data Reader dataset = cfg.EvalDataset eval_loader = create('EvalReader')(dataset, cfg['worker_num']) extra_key = ['im_shape', 'scale_factor', 'im_id'] if cfg.metric == 'VOC': extra_key += ['gt_bbox', 'gt_class', 'difficult'] # Run Eval outs_res = [] sample_num = 0 start_time = time.time() for iter_id, data in enumerate(eval_loader): # forward model.eval() outs = model(data, mode='infer') for key in extra_key: outs[key] = data[key] for key, value in outs.items(): outs[key] = value.numpy() if 'mask' in outs and 'bbox' in outs: mask_resolution = model.mask_post_process.mask_resolution from ppdet.py_op.post_process import mask_post_process outs['mask'] = mask_post_process( outs, outs['im_shape'], outs['scale_factor'], mask_resolution) outs_res.append(outs) # log sample_num += outs['im_id'].shape[0] if iter_id % 100 == 0: logger.info("Eval iter: {}".format(iter_id)) cost_time = time.time() - start_time logger.info('Total sample number: {}, averge FPS: {}'.format( sample_num, sample_num / cost_time)) eval_type = [] if 'bbox' in outs: eval_type.append('bbox') if 'mask' in outs: eval_type.append('mask') # Metric # TODO: support other metric with_background = cfg.with_background use_default_label = dataset.use_default_label if cfg.metric == 'COCO': from ppdet.utils.coco_eval import get_category_info clsid2catid, catid2name = get_category_info( dataset.get_anno(), with_background, use_default_label) infer_res = get_infer_results(outs_res, eval_type, clsid2catid) elif cfg.metric == 'VOC': from ppdet.utils.voc_eval import get_category_info clsid2catid, catid2name = get_category_info( dataset.get_label_list(), with_background, use_default_label) infer_res = outs_res eval_results(infer_res, cfg.metric, dataset) def main(): FLAGS = parse_args() cfg = load_config(FLAGS.config) merge_config(FLAGS.opt) check_config(cfg) check_gpu(cfg.use_gpu) check_version() place = 'gpu:{}'.format(ParallelEnv().dev_id) if cfg.use_gpu else 'cpu' place = paddle.set_device(place) run(FLAGS, cfg, place) if __name__ == '__main__': main()