use_gpu: true log_iter: 5 save_dir: output snapshot_epoch: 1 weights: output/tinypose3d_human36M/model_final epoch: 220 num_joints: &num_joints 24 pixel_std: &pixel_std 200 metric: Pose3DEval num_classes: 1 train_height: &train_height 128 train_width: &train_width 128 trainsize: &trainsize [*train_width, *train_height] #####model architecture: TinyPose3DHRNet pretrain_weights: https://bj.bcebos.com/v1/paddledet/models/keypoint/tinypose_128x96.pdparams TinyPose3DHRNet: backbone: LiteHRNet post_process: HR3DNetPostProcess fc_channel: 1024 num_joints: *num_joints width: &width 40 loss: Pose3DLoss LiteHRNet: network_type: wider_naive freeze_at: -1 freeze_norm: false return_idx: [0] Pose3DLoss: weight_3d: 1.0 weight_2d: 0.0 #####optimizer LearningRate: base_lr: 0.0001 schedulers: - !PiecewiseDecay milestones: [17, 21] gamma: 0.1 - !LinearWarmup start_factor: 0.01 steps: 1000 OptimizerBuilder: optimizer: type: Adam regularizer: factor: 0.0 type: L2 #####data TrainDataset: !Pose3DDataset dataset_dir: Human3.6M image_dirs: ["Images"] anno_list: ['Human3.6m_train.json'] num_joints: *num_joints test_mode: False EvalDataset: !Pose3DDataset dataset_dir: Human3.6M image_dirs: ["Images"] anno_list: ['Human3.6m_valid.json'] num_joints: *num_joints test_mode: True TestDataset: !ImageFolder anno_path: dataset/coco/keypoint_imagelist.txt worker_num: 4 global_mean: &global_mean [0.485, 0.456, 0.406] global_std: &global_std [0.229, 0.224, 0.225] TrainReader: sample_transforms: - SinglePoseAffine: trainsize: *trainsize rotate: [0.5, 30] #[prob, rotate range] scale: [0.5, 0.25] #[prob, scale range] batch_transforms: - NormalizeImage: mean: *global_mean std: *global_std is_scale: true - Permute: {} batch_size: 128 shuffle: true drop_last: true EvalReader: sample_transforms: - SinglePoseAffine: trainsize: *trainsize rotate: [0., 30] scale: [0., 0.25] batch_transforms: - NormalizeImage: mean: *global_mean std: *global_std is_scale: true - Permute: {} batch_size: 128 TestReader: inputs_def: image_shape: [3, *train_height, *train_width] sample_transforms: - Decode: {} - TopDownEvalAffine: trainsize: *trainsize - NormalizeImage: mean: *global_mean std: *global_std is_scale: true - Permute: {} batch_size: 1 fuse_normalize: false