/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #pragma once #include "paddle/fluid/platform/macros.h" namespace paddle { namespace operators { namespace jit { typedef enum { vmul = 0, vadd = 1, vaddrelu, vsub, vscal, vaddbias, vexp } KernelType; template struct XYZNTuples { typedef T data_type; typedef int attr_type; typedef void (*func_type)(const T*, const T*, T*, int); }; template struct AXYNTuples : public XYZNTuples {}; // Just for adding to kernel pool without template class Kernel { public: Kernel() = default; virtual ~Kernel() = default; DISABLE_COPY_AND_ASSIGN(Kernel); }; template class KernelImpl : public Kernel { using T = typename KernelTuples::data_type; using Func = typename KernelTuples::func_type; using Attr = typename KernelTuples::attr_type; public: virtual Func GetFunc() const { return func; } virtual bool UseMe(Attr attr) const = 0; protected: Func func{nullptr}; }; template class ReferKernel : public KernelImpl { public: // Refer code can always be used bool UseMe(typename KernelTuples::attr_type attr) const override { return true; } }; } // namespace jit } // namespace operators } // namespace paddle