# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ CIFAR dataset. This module will download dataset from https://www.cs.toronto.edu/~kriz/cifar.html and parse train/test set into paddle reader creators. The CIFAR-10 dataset consists of 60000 32x32 colour images in 10 classes, with 6000 images per class. There are 50000 training images and 10000 test images. The CIFAR-100 dataset is just like the CIFAR-10, except it has 100 classes containing 600 images each. There are 500 training images and 100 testing images per class. """ import itertools import numpy import paddle.dataset.common import tarfile import six from six.moves import cPickle as pickle __all__ = ['train100', 'test100', 'train10', 'test10', 'convert'] URL_PREFIX = 'https://www.cs.toronto.edu/~kriz/' CIFAR10_URL = URL_PREFIX + 'cifar-10-python.tar.gz' CIFAR10_MD5 = 'c58f30108f718f92721af3b95e74349a' CIFAR100_URL = URL_PREFIX + 'cifar-100-python.tar.gz' CIFAR100_MD5 = 'eb9058c3a382ffc7106e4002c42a8d85' def reader_creator(filename, sub_name, cycle=False): def read_batch(batch): data = batch[six.b('data')] labels = batch.get(six.b('labels'), batch.get(six.b('fine_labels'), None)) assert labels is not None for sample, label in six.moves.zip(data, labels): yield (sample / 255.0).astype(numpy.float32), int(label) def reader(): with tarfile.open(filename, mode='r') as f: names = [each_item.name for each_item in f if sub_name in each_item.name] while True: for name in names: if six.PY2: batch = pickle.load(f.extractfile(name)) else: batch = pickle.load(f.extractfile(name), encoding='bytes') for item in read_batch(batch): yield item if not cycle: break return reader def train100(): """ CIFAR-100 training set creator. It returns a reader creator, each sample in the reader is image pixels in [0, 1] and label in [0, 99]. :return: Training reader creator :rtype: callable """ return reader_creator( paddle.dataset.common.download(CIFAR100_URL, 'cifar', CIFAR100_MD5), 'train') def test100(): """ CIFAR-100 test set creator. It returns a reader creator, each sample in the reader is image pixels in [0, 1] and label in [0, 9]. :return: Test reader creator. :rtype: callable """ return reader_creator( paddle.dataset.common.download(CIFAR100_URL, 'cifar', CIFAR100_MD5), 'test') def train10(cycle=False): """ CIFAR-10 training set creator. It returns a reader creator, each sample in the reader is image pixels in [0, 1] and label in [0, 9]. :param cycle: whether to cycle through the dataset :type cycle: bool :return: Training reader creator :rtype: callable """ return reader_creator( paddle.dataset.common.download(CIFAR10_URL, 'cifar', CIFAR10_MD5), 'data_batch', cycle=cycle) def test10(cycle=False): """ CIFAR-10 test set creator. It returns a reader creator, each sample in the reader is image pixels in [0, 1] and label in [0, 9]. :param cycle: whether to cycle through the dataset :type cycle: bool :return: Test reader creator. :rtype: callable """ return reader_creator( paddle.dataset.common.download(CIFAR10_URL, 'cifar', CIFAR10_MD5), 'test_batch', cycle=cycle) def fetch(): paddle.dataset.common.download(CIFAR10_URL, 'cifar', CIFAR10_MD5) paddle.dataset.common.download(CIFAR100_URL, 'cifar', CIFAR100_MD5) def convert(path): """ Converts dataset to recordio format """ paddle.dataset.common.convert(path, train100(), 1000, "cifar_train100") paddle.dataset.common.convert(path, test100(), 1000, "cifar_test100") paddle.dataset.common.convert(path, train10(), 1000, "cifar_train10") paddle.dataset.common.convert(path, test10(), 1000, "cifar_test10")