English | [简体中文](QUICK_STARTED_cn.md) # Quick Start This tutorial fine-tunes a tiny dataset by pretrained detection model for users to get a model and learn PaddleDetection quickly. The model can be trained in around 20min with good performance. - **Note: before started, need to set PYTHONPATH and specifiy the GPU device as follows in Linux platform. For Windows users, also need to set PYTHONPATH correctly.** ```bash export PYTHONPATH=$PYTHONPATH:. export CUDA_VISIBLE_DEVICES=0 ``` ## Data Preparation Dataset refers to [Kaggle](https://www.kaggle.com/mbkinaci/fruit-images-for-object-detection), which contains 240 images in train dataset and 60 images in test dataset. Data categories are apple, orange and banana. Download [here](https://dataset.bj.bcebos.com/PaddleDetection_demo/fruit-detection.tar) and uncompress the dataset after download, script for data preparation is located at [download_fruit.py](../dataset/fruit/download_fruit.py). Command is as follows: ```bash python dataset/fruit/download_fruit.py ``` Training: ```bash python -u tools/train.py -c configs/yolov3_mobilenet_v1_fruit.yml \ --use_tb=True \ --tb_log_dir=tb_fruit_dir/scalar \ --eval ``` Use `yolov3_mobilenet_v1` to fine-tune the model from COCO dataset. Meanwhile, loss and mAP can be observed on tensorboard. ```bash tensorboard --logdir tb_fruit_dir/scalar/ --host --port ``` Result on tensorboard is shown below:
Model can be downloaded [here](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_mobilenet_v1_fruit.tar) Evaluation: ```bash python -u tools/eval.py -c configs/yolov3_mobilenet_v1_fruit.yml ``` Inference: ```bash python -u tools/infer.py -c configs/yolov3_mobilenet_v1_fruit.yml \ -o weights=https://paddlemodels.bj.bcebos.com/object_detection/yolov3_mobilenet_v1_fruit.tar \ --infer_img=demo/orange_71.jpg ``` Inference images are shown below:

For detailed infomation of training and evalution, please refer to [GETTING_STARTED.md](GETTING_STARTED.md).