# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import paddle import paddle.nn as nn import paddle.nn.functional as F from ppdet.core.workspace import register, serializable, load_config from ppdet.core.workspace import create from ppdet.utils.logger import setup_logger from ppdet.modeling import ops from ppdet.utils.checkpoint import load_pretrain_weight from ppdet.modeling.losses import YOLOv3Loss logger = setup_logger(__name__) class DistillModel(nn.Layer): def __init__(self, cfg, slim_cfg): super(DistillModel, self).__init__() self.student_model = create(cfg.architecture) logger.debug('Load student model pretrain_weights:{}'.format( cfg.pretrain_weights)) load_pretrain_weight(self.student_model, cfg.pretrain_weights) slim_cfg = load_config(slim_cfg) self.teacher_model = create(slim_cfg.architecture) self.distill_loss = create(slim_cfg.distill_loss) logger.debug('Load teacher model pretrain_weights:{}'.format( slim_cfg.pretrain_weights)) load_pretrain_weight(self.teacher_model, slim_cfg.pretrain_weights) for param in self.teacher_model.parameters(): param.trainable = False def parameters(self): return self.student_model.parameters() def forward(self, inputs): if self.training: teacher_loss = self.teacher_model(inputs) student_loss = self.student_model(inputs) loss = self.distill_loss(self.teacher_model, self.student_model) student_loss['distill_loss'] = loss student_loss['teacher_loss'] = teacher_loss['loss'] student_loss['loss'] += student_loss['distill_loss'] return student_loss else: return self.student_model(inputs) @register class DistillYOLOv3Loss(nn.Layer): def __init__(self, weight=1000): super(DistillYOLOv3Loss, self).__init__() self.weight = weight def obj_weighted_reg(self, sx, sy, sw, sh, tx, ty, tw, th, tobj): loss_x = ops.sigmoid_cross_entropy_with_logits(sx, F.sigmoid(tx)) loss_y = ops.sigmoid_cross_entropy_with_logits(sy, F.sigmoid(ty)) loss_w = paddle.abs(sw - tw) loss_h = paddle.abs(sh - th) loss = paddle.add_n([loss_x, loss_y, loss_w, loss_h]) weighted_loss = paddle.mean(loss * F.sigmoid(tobj)) return weighted_loss def obj_weighted_cls(self, scls, tcls, tobj): loss = ops.sigmoid_cross_entropy_with_logits(scls, F.sigmoid(tcls)) weighted_loss = paddle.mean(paddle.multiply(loss, F.sigmoid(tobj))) return weighted_loss def obj_loss(self, sobj, tobj): obj_mask = paddle.cast(tobj > 0., dtype="float32") obj_mask.stop_gradient = True loss = paddle.mean( ops.sigmoid_cross_entropy_with_logits(sobj, obj_mask)) return loss def forward(self, teacher_model, student_model): teacher_distill_pairs = teacher_model.yolo_head.loss.distill_pairs student_distill_pairs = student_model.yolo_head.loss.distill_pairs distill_reg_loss, distill_cls_loss, distill_obj_loss = [], [], [] for s_pair, t_pair in zip(student_distill_pairs, teacher_distill_pairs): distill_reg_loss.append( self.obj_weighted_reg(s_pair[0], s_pair[1], s_pair[2], s_pair[ 3], t_pair[0], t_pair[1], t_pair[2], t_pair[3], t_pair[4])) distill_cls_loss.append( self.obj_weighted_cls(s_pair[5], t_pair[5], t_pair[4])) distill_obj_loss.append(self.obj_loss(s_pair[4], t_pair[4])) distill_reg_loss = paddle.add_n(distill_reg_loss) distill_cls_loss = paddle.add_n(distill_cls_loss) distill_obj_loss = paddle.add_n(distill_obj_loss) loss = (distill_reg_loss + distill_cls_loss + distill_obj_loss ) * self.weight return loss