# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # function: # operators to process sample, # eg: decode/resize/crop image from __future__ import absolute_import from __future__ import print_function from __future__ import division try: from collections.abc import Sequence except Exception: from collections import Sequence from numbers import Number, Integral import uuid import random import math import numpy as np import os import copy import cv2 from PIL import Image, ImageEnhance, ImageDraw from ppdet.core.workspace import serializable from ppdet.modeling.layers import AnchorGrid from .op_helper import (satisfy_sample_constraint, filter_and_process, generate_sample_bbox, clip_bbox, data_anchor_sampling, satisfy_sample_constraint_coverage, crop_image_sampling, generate_sample_bbox_square, bbox_area_sampling, is_poly, gaussian_radius, draw_gaussian) from ppdet.utils.logger import setup_logger logger = setup_logger(__name__) registered_ops = [] def register_op(cls): registered_ops.append(cls.__name__) if not hasattr(BaseOperator, cls.__name__): setattr(BaseOperator, cls.__name__, cls) else: raise KeyError("The {} class has been registered.".format(cls.__name__)) return serializable(cls) class BboxError(ValueError): pass class ImageError(ValueError): pass class BaseOperator(object): def __init__(self, name=None): if name is None: name = self.__class__.__name__ self._id = name + '_' + str(uuid.uuid4())[-6:] def apply(self, sample, context=None): """ Process a sample. Args: sample (dict): a dict of sample, eg: {'image':xx, 'label': xxx} context (dict): info about this sample processing Returns: result (dict): a processed sample """ return sample def __call__(self, sample, context=None): """ Process a sample. Args: sample (dict): a dict of sample, eg: {'image':xx, 'label': xxx} context (dict): info about this sample processing Returns: result (dict): a processed sample """ if isinstance(sample, Sequence): for i in range(len(sample)): sample[i] = self.apply(sample[i], context) else: sample = self.apply(sample, context) return sample def __str__(self): return str(self._id) @register_op class Decode(BaseOperator): def __init__(self): """ Transform the image data to numpy format following the rgb format """ super(Decode, self).__init__() def apply(self, sample, context=None): """ load image if 'im_file' field is not empty but 'image' is""" if 'image' not in sample: with open(sample['im_file'], 'rb') as f: sample['image'] = f.read() sample.pop('im_file') im = sample['image'] data = np.frombuffer(im, dtype='uint8') im = cv2.imdecode(data, 1) # BGR mode, but need RGB mode im = cv2.cvtColor(im, cv2.COLOR_BGR2RGB) sample['image'] = im if 'h' not in sample: sample['h'] = im.shape[0] elif sample['h'] != im.shape[0]: logger.warn( "The actual image height: {} is not equal to the " "height: {} in annotation, and update sample['h'] by actual " "image height.".format(im.shape[0], sample['h'])) sample['h'] = im.shape[0] if 'w' not in sample: sample['w'] = im.shape[1] elif sample['w'] != im.shape[1]: logger.warn( "The actual image width: {} is not equal to the " "width: {} in annotation, and update sample['w'] by actual " "image width.".format(im.shape[1], sample['w'])) sample['w'] = im.shape[1] sample['im_shape'] = np.array(im.shape[:2], dtype=np.float32) sample['scale_factor'] = np.array([1., 1.], dtype=np.float32) return sample @register_op class Permute(BaseOperator): def __init__(self): """ Change the channel to be (C, H, W) """ super(Permute, self).__init__() def apply(self, sample, context=None): im = sample['image'] im = im.transpose((2, 0, 1)) sample['image'] = im return sample @register_op class Lighting(BaseOperator): """ Lighting the image by eigenvalues and eigenvectors Args: eigval (list): eigenvalues eigvec (list): eigenvectors alphastd (float): random weight of lighting, 0.1 by default """ def __init__(self, eigval, eigvec, alphastd=0.1): super(Lighting, self).__init__() self.alphastd = alphastd self.eigval = np.array(eigval).astype('float32') self.eigvec = np.array(eigvec).astype('float32') def apply(self, sample, context=None): alpha = np.random.normal(scale=self.alphastd, size=(3, )) sample['image'] += np.dot(self.eigvec, self.eigval * alpha) return sample @register_op class RandomErasingImage(BaseOperator): def __init__(self, prob=0.5, lower=0.02, higher=0.4, aspect_ratio=0.3): """ Random Erasing Data Augmentation, see https://arxiv.org/abs/1708.04896 Args: prob (float): probability to carry out random erasing lower (float): lower limit of the erasing area ratio heigher (float): upper limit of the erasing area ratio aspect_ratio (float): aspect ratio of the erasing region """ super(RandomErasingImage, self).__init__() self.prob = prob self.lower = lower self.heigher = heigher self.aspect_ratio = aspect_ratio def apply(self, sample): gt_bbox = sample['gt_bbox'] im = sample['image'] if not isinstance(im, np.ndarray): raise TypeError("{}: image is not a numpy array.".format(self)) if len(im.shape) != 3: raise ImageError("{}: image is not 3-dimensional.".format(self)) for idx in range(gt_bbox.shape[0]): if self.prob <= np.random.rand(): continue x1, y1, x2, y2 = gt_bbox[idx, :] w_bbox = x2 - x1 h_bbox = y2 - y1 area = w_bbox * h_bbox target_area = random.uniform(self.lower, self.higher) * area aspect_ratio = random.uniform(self.aspect_ratio, 1 / self.aspect_ratio) h = int(round(math.sqrt(target_area * aspect_ratio))) w = int(round(math.sqrt(target_area / aspect_ratio))) if w < w_bbox and h < h_bbox: off_y1 = random.randint(0, int(h_bbox - h)) off_x1 = random.randint(0, int(w_bbox - w)) im[int(y1 + off_y1):int(y1 + off_y1 + h), int(x1 + off_x1):int( x1 + off_x1 + w), :] = 0 sample['image'] = im return sample @register_op class NormalizeImage(BaseOperator): def __init__(self, mean=[0.485, 0.456, 0.406], std=[1, 1, 1], is_scale=True): """ Args: mean (list): the pixel mean std (list): the pixel variance """ super(NormalizeImage, self).__init__() self.mean = mean self.std = std self.is_scale = is_scale if not (isinstance(self.mean, list) and isinstance(self.std, list) and isinstance(self.is_scale, bool)): raise TypeError("{}: input type is invalid.".format(self)) from functools import reduce if reduce(lambda x, y: x * y, self.std) == 0: raise ValueError('{}: std is invalid!'.format(self)) def apply(self, sample, context=None): """Normalize the image. Operators: 1.(optional) Scale the image to [0,1] 2. Each pixel minus mean and is divided by std """ im = sample['image'] im = im.astype(np.float32, copy=False) mean = np.array(self.mean)[np.newaxis, np.newaxis, :] std = np.array(self.std)[np.newaxis, np.newaxis, :] if self.is_scale: im = im / 255.0 im -= mean im /= std sample['image'] = im return sample @register_op class GridMask(BaseOperator): def __init__(self, use_h=True, use_w=True, rotate=1, offset=False, ratio=0.5, mode=1, prob=0.7, upper_iter=360000): """ GridMask Data Augmentation, see https://arxiv.org/abs/2001.04086 Args: use_h (bool): whether to mask vertically use_w (boo;): whether to mask horizontally rotate (float): angle for the mask to rotate offset (float): mask offset ratio (float): mask ratio mode (int): gridmask mode prob (float): max probability to carry out gridmask upper_iter (int): suggested to be equal to global max_iter """ super(GridMask, self).__init__() self.use_h = use_h self.use_w = use_w self.rotate = rotate self.offset = offset self.ratio = ratio self.mode = mode self.prob = prob self.upper_iter = upper_iter from .gridmask_utils import GridMask self.gridmask_op = GridMask( use_h, use_w, rotate=rotate, offset=offset, ratio=ratio, mode=mode, prob=prob, upper_iter=upper_iter) def apply(self, sample, context=None): sample['image'] = self.gridmask_op(sample['image'], sample['curr_iter']) return sample @register_op class RandomDistort(BaseOperator): """Random color distortion. Args: hue (list): hue settings. in [lower, upper, probability] format. saturation (list): saturation settings. in [lower, upper, probability] format. contrast (list): contrast settings. in [lower, upper, probability] format. brightness (list): brightness settings. in [lower, upper, probability] format. random_apply (bool): whether to apply in random (yolo) or fixed (SSD) order. count (int): the number of doing distrot random_channel (bool): whether to swap channels randomly """ def __init__(self, hue=[-18, 18, 0.5], saturation=[0.5, 1.5, 0.5], contrast=[0.5, 1.5, 0.5], brightness=[0.5, 1.5, 0.5], random_apply=True, count=4, random_channel=False): super(RandomDistort, self).__init__() self.hue = hue self.saturation = saturation self.contrast = contrast self.brightness = brightness self.random_apply = random_apply self.count = count self.random_channel = random_channel def apply_hue(self, img): low, high, prob = self.hue if np.random.uniform(0., 1.) < prob: return img img = img.astype(np.float32) # it works, but result differ from HSV version delta = np.random.uniform(low, high) u = np.cos(delta * np.pi) w = np.sin(delta * np.pi) bt = np.array([[1.0, 0.0, 0.0], [0.0, u, -w], [0.0, w, u]]) tyiq = np.array([[0.299, 0.587, 0.114], [0.596, -0.274, -0.321], [0.211, -0.523, 0.311]]) ityiq = np.array([[1.0, 0.956, 0.621], [1.0, -0.272, -0.647], [1.0, -1.107, 1.705]]) t = np.dot(np.dot(ityiq, bt), tyiq).T img = np.dot(img, t) return img def apply_saturation(self, img): low, high, prob = self.saturation if np.random.uniform(0., 1.) < prob: return img delta = np.random.uniform(low, high) img = img.astype(np.float32) # it works, but result differ from HSV version gray = img * np.array([[[0.299, 0.587, 0.114]]], dtype=np.float32) gray = gray.sum(axis=2, keepdims=True) gray *= (1.0 - delta) img *= delta img += gray return img def apply_contrast(self, img): low, high, prob = self.contrast if np.random.uniform(0., 1.) < prob: return img delta = np.random.uniform(low, high) img = img.astype(np.float32) img *= delta return img def apply_brightness(self, img): low, high, prob = self.brightness if np.random.uniform(0., 1.) < prob: return img delta = np.random.uniform(low, high) img = img.astype(np.float32) img += delta return img def apply(self, sample, context=None): img = sample['image'] if self.random_apply: functions = [ self.apply_brightness, self.apply_contrast, self.apply_saturation, self.apply_hue ] distortions = np.random.permutation(functions)[:self.count] for func in distortions: img = func(img) sample['image'] = img return sample img = self.apply_brightness(img) mode = np.random.randint(0, 2) if mode: img = self.apply_contrast(img) img = self.apply_saturation(img) img = self.apply_hue(img) if not mode: img = self.apply_contrast(img) if self.random_channel: if np.random.randint(0, 2): img = img[..., np.random.permutation(3)] sample['image'] = img return sample @register_op class AutoAugment(BaseOperator): def __init__(self, autoaug_type="v1"): """ Args: autoaug_type (str): autoaug type, support v0, v1, v2, v3, test """ super(AutoAugment, self).__init__() self.autoaug_type = autoaug_type def apply(self, sample, context=None): """ Learning Data Augmentation Strategies for Object Detection, see https://arxiv.org/abs/1906.11172 """ im = sample['image'] gt_bbox = sample['gt_bbox'] if not isinstance(im, np.ndarray): raise TypeError("{}: image is not a numpy array.".format(self)) if len(im.shape) != 3: raise ImageError("{}: image is not 3-dimensional.".format(self)) if len(gt_bbox) == 0: return sample height, width, _ = im.shape norm_gt_bbox = np.ones_like(gt_bbox, dtype=np.float32) norm_gt_bbox[:, 0] = gt_bbox[:, 1] / float(height) norm_gt_bbox[:, 1] = gt_bbox[:, 0] / float(width) norm_gt_bbox[:, 2] = gt_bbox[:, 3] / float(height) norm_gt_bbox[:, 3] = gt_bbox[:, 2] / float(width) from .autoaugment_utils import distort_image_with_autoaugment im, norm_gt_bbox = distort_image_with_autoaugment(im, norm_gt_bbox, self.autoaug_type) gt_bbox[:, 0] = norm_gt_bbox[:, 1] * float(width) gt_bbox[:, 1] = norm_gt_bbox[:, 0] * float(height) gt_bbox[:, 2] = norm_gt_bbox[:, 3] * float(width) gt_bbox[:, 3] = norm_gt_bbox[:, 2] * float(height) sample['image'] = im sample['gt_bbox'] = gt_bbox return sample @register_op class RandomFlip(BaseOperator): def __init__(self, prob=0.5): """ Args: prob (float): the probability of flipping image """ super(RandomFlip, self).__init__() self.prob = prob if not (isinstance(self.prob, float)): raise TypeError("{}: input type is invalid.".format(self)) def apply_segm(self, segms, height, width): def _flip_poly(poly, width): flipped_poly = np.array(poly) flipped_poly[0::2] = width - np.array(poly[0::2]) return flipped_poly.tolist() def _flip_rle(rle, height, width): if 'counts' in rle and type(rle['counts']) == list: rle = mask_util.frPyObjects(rle, height, width) mask = mask_util.decode(rle) mask = mask[:, ::-1] rle = mask_util.encode(np.array(mask, order='F', dtype=np.uint8)) return rle flipped_segms = [] for segm in segms: if is_poly(segm): # Polygon format flipped_segms.append([_flip_poly(poly, width) for poly in segm]) else: # RLE format import pycocotools.mask as mask_util flipped_segms.append(_flip_rle(segm, height, width)) return flipped_segms def apply_keypoint(self, gt_keypoint, width): for i in range(gt_keypoint.shape[1]): if i % 2 == 0: old_x = gt_keypoint[:, i].copy() gt_keypoint[:, i] = width - old_x return gt_keypoint def apply_image(self, image): return image[:, ::-1, :] def apply_bbox(self, bbox, width): oldx1 = bbox[:, 0].copy() oldx2 = bbox[:, 2].copy() bbox[:, 0] = width - oldx2 bbox[:, 2] = width - oldx1 return bbox def apply_rbox(self, bbox, width): oldx1 = bbox[:, 0].copy() oldx2 = bbox[:, 2].copy() oldx3 = bbox[:, 4].copy() oldx4 = bbox[:, 6].copy() bbox[:, 0] = width - oldx2 bbox[:, 2] = width - oldx1 bbox[:, 4] = width - oldx3 bbox[:, 6] = width - oldx4 return bbox def apply(self, sample, context=None): """Filp the image and bounding box. Operators: 1. Flip the image numpy. 2. Transform the bboxes' x coordinates. (Must judge whether the coordinates are normalized!) 3. Transform the segmentations' x coordinates. (Must judge whether the coordinates are normalized!) Output: sample: the image, bounding box and segmentation part in sample are flipped. """ if np.random.uniform(0, 1) < self.prob: im = sample['image'] height, width = im.shape[:2] im = self.apply_image(im) if 'gt_bbox' in sample and len(sample['gt_bbox']) > 0: sample['gt_bbox'] = self.apply_bbox(sample['gt_bbox'], width) if 'gt_poly' in sample and len(sample['gt_poly']) > 0: sample['gt_poly'] = self.apply_segm(sample['gt_poly'], height, width) if 'gt_keypoint' in sample and len(sample['gt_keypoint']) > 0: sample['gt_keypoint'] = self.apply_keypoint( sample['gt_keypoint'], width) if 'semantic' in sample and sample['semantic']: sample['semantic'] = sample['semantic'][:, ::-1] if 'gt_segm' in sample and sample['gt_segm'].any(): sample['gt_segm'] = sample['gt_segm'][:, :, ::-1] if 'gt_rbox2poly' in sample and sample['gt_rbox2poly'].any(): sample['gt_rbox2poly'] = self.apply_bbox(sample['gt_rbox2poly'], width) sample['flipped'] = True sample['image'] = im return sample @register_op class Resize(BaseOperator): def __init__(self, target_size, keep_ratio, interp=cv2.INTER_LINEAR): """ Resize image to target size. if keep_ratio is True, resize the image's long side to the maximum of target_size if keep_ratio is False, resize the image to target size(h, w) Args: target_size (int|list): image target size keep_ratio (bool): whether keep_ratio or not, default true interp (int): the interpolation method """ super(Resize, self).__init__() self.keep_ratio = keep_ratio self.interp = interp if not isinstance(target_size, (Integral, Sequence)): raise TypeError( "Type of target_size is invalid. Must be Integer or List or Tuple, now is {}". format(type(target_size))) if isinstance(target_size, Integral): target_size = [target_size, target_size] self.target_size = target_size def apply_image(self, image, scale): im_scale_x, im_scale_y = scale return cv2.resize( image, None, None, fx=im_scale_x, fy=im_scale_y, interpolation=self.interp) def apply_bbox(self, bbox, scale, size): im_scale_x, im_scale_y = scale resize_w, resize_h = size bbox[:, 0::2] *= im_scale_x bbox[:, 1::2] *= im_scale_y bbox[:, 0::2] = np.clip(bbox[:, 0::2], 0, resize_w) bbox[:, 1::2] = np.clip(bbox[:, 1::2], 0, resize_h) return bbox def apply_segm(self, segms, im_size, scale): def _resize_poly(poly, im_scale_x, im_scale_y): resized_poly = np.array(poly) resized_poly[0::2] *= im_scale_x resized_poly[1::2] *= im_scale_y return resized_poly.tolist() def _resize_rle(rle, im_h, im_w, im_scale_x, im_scale_y): if 'counts' in rle and type(rle['counts']) == list: rle = mask_util.frPyObjects(rle, im_h, im_w) mask = mask_util.decode(rle) mask = cv2.resize( image, None, None, fx=im_scale_x, fy=im_scale_y, interpolation=self.interp) rle = mask_util.encode(np.array(mask, order='F', dtype=np.uint8)) return rle im_h, im_w = im_size im_scale_x, im_scale_y = scale resized_segms = [] for segm in segms: if is_poly(segm): # Polygon format resized_segms.append([ _resize_poly(poly, im_scale_x, im_scale_y) for poly in segm ]) else: # RLE format import pycocotools.mask as mask_util resized_segms.append( _resize_rle(segm, im_h, im_w, im_scale_x, im_scale_y)) return resized_segms def apply(self, sample, context=None): """ Resize the image numpy. """ im = sample['image'] if not isinstance(im, np.ndarray): raise TypeError("{}: image type is not numpy.".format(self)) if len(im.shape) != 3: raise ImageError('{}: image is not 3-dimensional.'.format(self)) # apply image im_shape = im.shape if self.keep_ratio: im_size_min = np.min(im_shape[0:2]) im_size_max = np.max(im_shape[0:2]) target_size_min = np.min(self.target_size) target_size_max = np.max(self.target_size) im_scale = min(target_size_min / im_size_min, target_size_max / im_size_max) resize_h = im_scale * float(im_shape[0]) resize_w = im_scale * float(im_shape[1]) im_scale_x = im_scale im_scale_y = im_scale else: resize_h, resize_w = self.target_size im_scale_y = resize_h / im_shape[0] im_scale_x = resize_w / im_shape[1] im = self.apply_image(sample['image'], [im_scale_x, im_scale_y]) sample['image'] = im sample['im_shape'] = np.asarray([resize_h, resize_w], dtype=np.float32) if 'scale_factor' in sample: scale_factor = sample['scale_factor'] sample['scale_factor'] = np.asarray( [scale_factor[0] * im_scale_y, scale_factor[1] * im_scale_x], dtype=np.float32) else: sample['scale_factor'] = np.asarray( [im_scale_y, im_scale_x], dtype=np.float32) # apply bbox if 'gt_bbox' in sample and len(sample['gt_bbox']) > 0: sample['gt_bbox'] = self.apply_bbox(sample['gt_bbox'], [im_scale_x, im_scale_y], [resize_w, resize_h]) # apply rbox if 'gt_rbox2poly' in sample: if np.array(sample['gt_rbox2poly']).shape[1] != 8: logger.warn( "gt_rbox2poly's length shoule be 8, but actually is {}". format(len(sample['gt_rbox2poly']))) sample['gt_rbox2poly'] = self.apply_bbox(sample['gt_rbox2poly'], [im_scale_x, im_scale_y], [resize_w, resize_h]) # apply polygon if 'gt_poly' in sample and len(sample['gt_poly']) > 0: sample['gt_poly'] = self.apply_segm(sample['gt_poly'], im_shape[:2], [im_scale_x, im_scale_y]) # apply semantic if 'semantic' in sample and sample['semantic']: semantic = sample['semantic'] semantic = cv2.resize( semantic.astype('float32'), None, None, fx=im_scale_x, fy=im_scale_y, interpolation=self.interp) semantic = np.asarray(semantic).astype('int32') semantic = np.expand_dims(semantic, 0) sample['semantic'] = semantic # apply gt_segm if 'gt_segm' in sample and len(sample['gt_segm']) > 0: masks = [ cv2.resize( gt_segm, None, None, fx=im_scale_x, fy=im_scale_y, interpolation=cv2.INTER_NEAREST) for gt_segm in sample['gt_segm'] ] sample['gt_segm'] = np.asarray(masks).astype(np.uint8) return sample @register_op class MultiscaleTestResize(BaseOperator): def __init__(self, origin_target_size=[800, 1333], target_size=[], interp=cv2.INTER_LINEAR, use_flip=True): """ Rescale image to the each size in target size, and capped at max_size. Args: origin_target_size (list): origin target size of image target_size (list): A list of target sizes of image. interp (int): the interpolation method. use_flip (bool): whether use flip augmentation. """ super(MultiscaleTestResize, self).__init__() self.interp = interp self.use_flip = use_flip if not isinstance(target_size, Sequence): raise TypeError( "Type of target_size is invalid. Must be List or Tuple, now is {}". format(type(target_size))) self.target_size = target_size if not isinstance(origin_target_size, Sequence): raise TypeError( "Type of origin_target_size is invalid. Must be List or Tuple, now is {}". format(type(origin_target_size))) self.origin_target_size = origin_target_size def apply(self, sample, context=None): """ Resize the image numpy for multi-scale test. """ samples = [] resizer = Resize( self.origin_target_size, keep_ratio=True, interp=self.interp) samples.append(resizer(sample.copy(), context)) if self.use_flip: flipper = RandomFlip(1.1) samples.append(flipper(sample.copy(), context=context)) for size in self.target_size: resizer = Resize(size, keep_ratio=True, interp=self.interp) samples.append(resizer(sample.copy(), context)) return samples @register_op class RandomResize(BaseOperator): def __init__(self, target_size, keep_ratio=True, interp=cv2.INTER_LINEAR, random_size=True, random_interp=False): """ Resize image to target size randomly. random target_size and interpolation method Args: target_size (int, list, tuple): image target size, if random size is True, must be list or tuple keep_ratio (bool): whether keep_raio or not, default true interp (int): the interpolation method random_size (bool): whether random select target size of image random_interp (bool): whether random select interpolation method """ super(RandomResize, self).__init__() self.keep_ratio = keep_ratio self.interp = interp self.interps = [ cv2.INTER_NEAREST, cv2.INTER_LINEAR, cv2.INTER_AREA, cv2.INTER_CUBIC, cv2.INTER_LANCZOS4, ] assert isinstance(target_size, ( Integral, Sequence)), "target_size must be Integer, List or Tuple" if random_size and not isinstance(target_size, Sequence): raise TypeError( "Type of target_size is invalid when random_size is True. Must be List or Tuple, now is {}". format(type(target_size))) self.target_size = target_size self.random_size = random_size self.random_interp = random_interp def apply(self, sample, context=None): """ Resize the image numpy. """ if self.random_size: target_size = random.choice(self.target_size) else: target_size = self.target_size if self.random_interp: interp = random.choice(self.interps) else: interp = self.interp resizer = Resize(target_size, self.keep_ratio, interp) return resizer(sample, context=context) @register_op class RandomExpand(BaseOperator): """Random expand the canvas. Args: ratio (float): maximum expansion ratio. prob (float): probability to expand. fill_value (list): color value used to fill the canvas. in RGB order. """ def __init__(self, ratio=4., prob=0.5, fill_value=(127.5, 127.5, 127.5)): super(RandomExpand, self).__init__() assert ratio > 1.01, "expand ratio must be larger than 1.01" self.ratio = ratio self.prob = prob assert isinstance(fill_value, (Number, Sequence)), \ "fill value must be either float or sequence" if isinstance(fill_value, Number): fill_value = (fill_value, ) * 3 if not isinstance(fill_value, tuple): fill_value = tuple(fill_value) self.fill_value = fill_value def apply(self, sample, context=None): if np.random.uniform(0., 1.) < self.prob: return sample im = sample['image'] height, width = im.shape[:2] ratio = np.random.uniform(1., self.ratio) h = int(height * ratio) w = int(width * ratio) if not h > height or not w > width: return sample y = np.random.randint(0, h - height) x = np.random.randint(0, w - width) offsets, size = [x, y], [h, w] pad = Pad(size, pad_mode=-1, offsets=offsets, fill_value=self.fill_value) return pad(sample, context=context) @register_op class CropWithSampling(BaseOperator): def __init__(self, batch_sampler, satisfy_all=False, avoid_no_bbox=True): """ Args: batch_sampler (list): Multiple sets of different parameters for cropping. satisfy_all (bool): whether all boxes must satisfy. e.g.[[1, 1, 1.0, 1.0, 1.0, 1.0, 0.0, 1.0], [1, 50, 0.3, 1.0, 0.5, 2.0, 0.1, 1.0], [1, 50, 0.3, 1.0, 0.5, 2.0, 0.3, 1.0], [1, 50, 0.3, 1.0, 0.5, 2.0, 0.5, 1.0], [1, 50, 0.3, 1.0, 0.5, 2.0, 0.7, 1.0], [1, 50, 0.3, 1.0, 0.5, 2.0, 0.9, 1.0], [1, 50, 0.3, 1.0, 0.5, 2.0, 0.0, 1.0]] [max sample, max trial, min scale, max scale, min aspect ratio, max aspect ratio, min overlap, max overlap] avoid_no_bbox (bool): whether to to avoid the situation where the box does not appear. """ super(CropWithSampling, self).__init__() self.batch_sampler = batch_sampler self.satisfy_all = satisfy_all self.avoid_no_bbox = avoid_no_bbox def apply(self, sample, context): """ Crop the image and modify bounding box. Operators: 1. Scale the image width and height. 2. Crop the image according to a radom sample. 3. Rescale the bounding box. 4. Determine if the new bbox is satisfied in the new image. Returns: sample: the image, bounding box are replaced. """ assert 'image' in sample, "image data not found" im = sample['image'] gt_bbox = sample['gt_bbox'] gt_class = sample['gt_class'] im_height, im_width = im.shape[:2] gt_score = None if 'gt_score' in sample: gt_score = sample['gt_score'] sampled_bbox = [] gt_bbox = gt_bbox.tolist() for sampler in self.batch_sampler: found = 0 for i in range(sampler[1]): if found >= sampler[0]: break sample_bbox = generate_sample_bbox(sampler) if satisfy_sample_constraint(sampler, sample_bbox, gt_bbox, self.satisfy_all): sampled_bbox.append(sample_bbox) found = found + 1 im = np.array(im) while sampled_bbox: idx = int(np.random.uniform(0, len(sampled_bbox))) sample_bbox = sampled_bbox.pop(idx) sample_bbox = clip_bbox(sample_bbox) crop_bbox, crop_class, crop_score = \ filter_and_process(sample_bbox, gt_bbox, gt_class, scores=gt_score) if self.avoid_no_bbox: if len(crop_bbox) < 1: continue xmin = int(sample_bbox[0] * im_width) xmax = int(sample_bbox[2] * im_width) ymin = int(sample_bbox[1] * im_height) ymax = int(sample_bbox[3] * im_height) im = im[ymin:ymax, xmin:xmax] sample['image'] = im sample['gt_bbox'] = crop_bbox sample['gt_class'] = crop_class sample['gt_score'] = crop_score return sample return sample @register_op class CropWithDataAchorSampling(BaseOperator): def __init__(self, batch_sampler, anchor_sampler=None, target_size=None, das_anchor_scales=[16, 32, 64, 128], sampling_prob=0.5, min_size=8., avoid_no_bbox=True): """ Args: anchor_sampler (list): anchor_sampling sets of different parameters for cropping. batch_sampler (list): Multiple sets of different parameters for cropping. e.g.[[1, 10, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0, 0.2, 0.0]] [[1, 50, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0, 1.0, 0.0], [1, 50, 0.3, 1.0, 1.0, 1.0, 0.0, 0.0, 1.0, 0.0], [1, 50, 0.3, 1.0, 1.0, 1.0, 0.0, 0.0, 1.0, 0.0], [1, 50, 0.3, 1.0, 1.0, 1.0, 0.0, 0.0, 1.0, 0.0], [1, 50, 0.3, 1.0, 1.0, 1.0, 0.0, 0.0, 1.0, 0.0]] [max sample, max trial, min scale, max scale, min aspect ratio, max aspect ratio, min overlap, max overlap, min coverage, max coverage] target_size (int): target image size. das_anchor_scales (list[float]): a list of anchor scales in data anchor smapling. min_size (float): minimum size of sampled bbox. avoid_no_bbox (bool): whether to to avoid the situation where the box does not appear. """ super(CropWithDataAchorSampling, self).__init__() self.anchor_sampler = anchor_sampler self.batch_sampler = batch_sampler self.target_size = target_size self.sampling_prob = sampling_prob self.min_size = min_size self.avoid_no_bbox = avoid_no_bbox self.das_anchor_scales = np.array(das_anchor_scales) def apply(self, sample, context): """ Crop the image and modify bounding box. Operators: 1. Scale the image width and height. 2. Crop the image according to a radom sample. 3. Rescale the bounding box. 4. Determine if the new bbox is satisfied in the new image. Returns: sample: the image, bounding box are replaced. """ assert 'image' in sample, "image data not found" im = sample['image'] gt_bbox = sample['gt_bbox'] gt_class = sample['gt_class'] image_height, image_width = im.shape[:2] gt_bbox[:, 0] /= image_width gt_bbox[:, 1] /= image_height gt_bbox[:, 2] /= image_width gt_bbox[:, 3] /= image_height gt_score = None if 'gt_score' in sample: gt_score = sample['gt_score'] sampled_bbox = [] gt_bbox = gt_bbox.tolist() prob = np.random.uniform(0., 1.) if prob > self.sampling_prob: # anchor sampling assert self.anchor_sampler for sampler in self.anchor_sampler: found = 0 for i in range(sampler[1]): if found >= sampler[0]: break sample_bbox = data_anchor_sampling( gt_bbox, image_width, image_height, self.das_anchor_scales, self.target_size) if sample_bbox == 0: break if satisfy_sample_constraint_coverage(sampler, sample_bbox, gt_bbox): sampled_bbox.append(sample_bbox) found = found + 1 im = np.array(im) while sampled_bbox: idx = int(np.random.uniform(0, len(sampled_bbox))) sample_bbox = sampled_bbox.pop(idx) if 'gt_keypoint' in sample.keys(): keypoints = (sample['gt_keypoint'], sample['keypoint_ignore']) crop_bbox, crop_class, crop_score, gt_keypoints = \ filter_and_process(sample_bbox, gt_bbox, gt_class, scores=gt_score, keypoints=keypoints) else: crop_bbox, crop_class, crop_score = filter_and_process( sample_bbox, gt_bbox, gt_class, scores=gt_score) crop_bbox, crop_class, crop_score = bbox_area_sampling( crop_bbox, crop_class, crop_score, self.target_size, self.min_size) if self.avoid_no_bbox: if len(crop_bbox) < 1: continue im = crop_image_sampling(im, sample_bbox, image_width, image_height, self.target_size) height, width = im.shape[:2] crop_bbox[:, 0] *= width crop_bbox[:, 1] *= height crop_bbox[:, 2] *= width crop_bbox[:, 3] *= height sample['image'] = im sample['gt_bbox'] = crop_bbox sample['gt_class'] = crop_class if 'gt_score' in sample: sample['gt_score'] = crop_score if 'gt_keypoint' in sample.keys(): sample['gt_keypoint'] = gt_keypoints[0] sample['keypoint_ignore'] = gt_keypoints[1] return sample return sample else: for sampler in self.batch_sampler: found = 0 for i in range(sampler[1]): if found >= sampler[0]: break sample_bbox = generate_sample_bbox_square( sampler, image_width, image_height) if satisfy_sample_constraint_coverage(sampler, sample_bbox, gt_bbox): sampled_bbox.append(sample_bbox) found = found + 1 im = np.array(im) while sampled_bbox: idx = int(np.random.uniform(0, len(sampled_bbox))) sample_bbox = sampled_bbox.pop(idx) sample_bbox = clip_bbox(sample_bbox) if 'gt_keypoint' in sample.keys(): keypoints = (sample['gt_keypoint'], sample['keypoint_ignore']) crop_bbox, crop_class, crop_score, gt_keypoints = \ filter_and_process(sample_bbox, gt_bbox, gt_class, scores=gt_score, keypoints=keypoints) else: crop_bbox, crop_class, crop_score = filter_and_process( sample_bbox, gt_bbox, gt_class, scores=gt_score) # sampling bbox according the bbox area crop_bbox, crop_class, crop_score = bbox_area_sampling( crop_bbox, crop_class, crop_score, self.target_size, self.min_size) if self.avoid_no_bbox: if len(crop_bbox) < 1: continue xmin = int(sample_bbox[0] * image_width) xmax = int(sample_bbox[2] * image_width) ymin = int(sample_bbox[1] * image_height) ymax = int(sample_bbox[3] * image_height) im = im[ymin:ymax, xmin:xmax] height, width = im.shape[:2] crop_bbox[:, 0] *= width crop_bbox[:, 1] *= height crop_bbox[:, 2] *= width crop_bbox[:, 3] *= height sample['image'] = im sample['gt_bbox'] = crop_bbox sample['gt_class'] = crop_class if 'gt_score' in sample: sample['gt_score'] = crop_score if 'gt_keypoint' in sample.keys(): sample['gt_keypoint'] = gt_keypoints[0] sample['keypoint_ignore'] = gt_keypoints[1] return sample return sample @register_op class RandomCrop(BaseOperator): """Random crop image and bboxes. Args: aspect_ratio (list): aspect ratio of cropped region. in [min, max] format. thresholds (list): iou thresholds for decide a valid bbox crop. scaling (list): ratio between a cropped region and the original image. in [min, max] format. num_attempts (int): number of tries before giving up. allow_no_crop (bool): allow return without actually cropping them. cover_all_box (bool): ensure all bboxes are covered in the final crop. is_mask_crop(bool): whether crop the segmentation. """ def __init__(self, aspect_ratio=[.5, 2.], thresholds=[.0, .1, .3, .5, .7, .9], scaling=[.3, 1.], num_attempts=50, allow_no_crop=True, cover_all_box=False, is_mask_crop=False): super(RandomCrop, self).__init__() self.aspect_ratio = aspect_ratio self.thresholds = thresholds self.scaling = scaling self.num_attempts = num_attempts self.allow_no_crop = allow_no_crop self.cover_all_box = cover_all_box self.is_mask_crop = is_mask_crop def crop_segms(self, segms, valid_ids, crop, height, width): def _crop_poly(segm, crop): xmin, ymin, xmax, ymax = crop crop_coord = [xmin, ymin, xmin, ymax, xmax, ymax, xmax, ymin] crop_p = np.array(crop_coord).reshape(4, 2) crop_p = Polygon(crop_p) crop_segm = list() for poly in segm: poly = np.array(poly).reshape(len(poly) // 2, 2) polygon = Polygon(poly) if not polygon.is_valid: exterior = polygon.exterior multi_lines = exterior.intersection(exterior) polygons = shapely.ops.polygonize(multi_lines) polygon = MultiPolygon(polygons) multi_polygon = list() if isinstance(polygon, MultiPolygon): multi_polygon = copy.deepcopy(polygon) else: multi_polygon.append(copy.deepcopy(polygon)) for per_polygon in multi_polygon: inter = per_polygon.intersection(crop_p) if not inter: continue if isinstance(inter, (MultiPolygon, GeometryCollection)): for part in inter: if not isinstance(part, Polygon): continue part = np.squeeze( np.array(part.exterior.coords[:-1]).reshape(1, -1)) part[0::2] -= xmin part[1::2] -= ymin crop_segm.append(part.tolist()) elif isinstance(inter, Polygon): crop_poly = np.squeeze( np.array(inter.exterior.coords[:-1]).reshape(1, -1)) crop_poly[0::2] -= xmin crop_poly[1::2] -= ymin crop_segm.append(crop_poly.tolist()) else: continue return crop_segm def _crop_rle(rle, crop, height, width): if 'counts' in rle and type(rle['counts']) == list: rle = mask_util.frPyObjects(rle, height, width) mask = mask_util.decode(rle) mask = mask[crop[1]:crop[3], crop[0]:crop[2]] rle = mask_util.encode(np.array(mask, order='F', dtype=np.uint8)) return rle crop_segms = [] for id in valid_ids: segm = segms[id] if is_poly(segm): import copy import shapely.ops from shapely.geometry import Polygon, MultiPolygon, GeometryCollection logging.getLogger("shapely").setLevel(logging.WARNING) # Polygon format crop_segms.append(_crop_poly(segm, crop)) else: # RLE format import pycocotools.mask as mask_util crop_segms.append(_crop_rle(segm, crop, height, width)) return crop_segms def apply(self, sample, context=None): if 'gt_bbox' in sample and len(sample['gt_bbox']) == 0: return sample h, w = sample['image'].shape[:2] gt_bbox = sample['gt_bbox'] # NOTE Original method attempts to generate one candidate for each # threshold then randomly sample one from the resulting list. # Here a short circuit approach is taken, i.e., randomly choose a # threshold and attempt to find a valid crop, and simply return the # first one found. # The probability is not exactly the same, kinda resembling the # "Monty Hall" problem. Actually carrying out the attempts will affect # observability (just like opening doors in the "Monty Hall" game). thresholds = list(self.thresholds) if self.allow_no_crop: thresholds.append('no_crop') np.random.shuffle(thresholds) for thresh in thresholds: if thresh == 'no_crop': return sample found = False for i in range(self.num_attempts): scale = np.random.uniform(*self.scaling) if self.aspect_ratio is not None: min_ar, max_ar = self.aspect_ratio aspect_ratio = np.random.uniform( max(min_ar, scale**2), min(max_ar, scale**-2)) h_scale = scale / np.sqrt(aspect_ratio) w_scale = scale * np.sqrt(aspect_ratio) else: h_scale = np.random.uniform(*self.scaling) w_scale = np.random.uniform(*self.scaling) crop_h = h * h_scale crop_w = w * w_scale if self.aspect_ratio is None: if crop_h / crop_w < 0.5 or crop_h / crop_w > 2.0: continue crop_h = int(crop_h) crop_w = int(crop_w) crop_y = np.random.randint(0, h - crop_h) crop_x = np.random.randint(0, w - crop_w) crop_box = [crop_x, crop_y, crop_x + crop_w, crop_y + crop_h] iou = self._iou_matrix( gt_bbox, np.array( [crop_box], dtype=np.float32)) if iou.max() < thresh: continue if self.cover_all_box and iou.min() < thresh: continue cropped_box, valid_ids = self._crop_box_with_center_constraint( gt_bbox, np.array( crop_box, dtype=np.float32)) if valid_ids.size > 0: found = True break if found: if self.is_mask_crop and 'gt_poly' in sample and len(sample[ 'gt_poly']) > 0: crop_polys = self.crop_segms( sample['gt_poly'], valid_ids, np.array( crop_box, dtype=np.int64), h, w) if [] in crop_polys: delete_id = list() valid_polys = list() for id, crop_poly in enumerate(crop_polys): if crop_poly == []: delete_id.append(id) else: valid_polys.append(crop_poly) valid_ids = np.delete(valid_ids, delete_id) if len(valid_polys) == 0: return sample sample['gt_poly'] = valid_polys else: sample['gt_poly'] = crop_polys if 'gt_segm' in sample: sample['gt_segm'] = self._crop_segm(sample['gt_segm'], crop_box) sample['gt_segm'] = np.take( sample['gt_segm'], valid_ids, axis=0) sample['image'] = self._crop_image(sample['image'], crop_box) sample['gt_bbox'] = np.take(cropped_box, valid_ids, axis=0) sample['gt_class'] = np.take( sample['gt_class'], valid_ids, axis=0) if 'gt_score' in sample: sample['gt_score'] = np.take( sample['gt_score'], valid_ids, axis=0) if 'is_crowd' in sample: sample['is_crowd'] = np.take( sample['is_crowd'], valid_ids, axis=0) return sample return sample def _iou_matrix(self, a, b): tl_i = np.maximum(a[:, np.newaxis, :2], b[:, :2]) br_i = np.minimum(a[:, np.newaxis, 2:], b[:, 2:]) area_i = np.prod(br_i - tl_i, axis=2) * (tl_i < br_i).all(axis=2) area_a = np.prod(a[:, 2:] - a[:, :2], axis=1) area_b = np.prod(b[:, 2:] - b[:, :2], axis=1) area_o = (area_a[:, np.newaxis] + area_b - area_i) return area_i / (area_o + 1e-10) def _crop_box_with_center_constraint(self, box, crop): cropped_box = box.copy() cropped_box[:, :2] = np.maximum(box[:, :2], crop[:2]) cropped_box[:, 2:] = np.minimum(box[:, 2:], crop[2:]) cropped_box[:, :2] -= crop[:2] cropped_box[:, 2:] -= crop[:2] centers = (box[:, :2] + box[:, 2:]) / 2 valid = np.logical_and(crop[:2] <= centers, centers < crop[2:]).all(axis=1) valid = np.logical_and( valid, (cropped_box[:, :2] < cropped_box[:, 2:]).all(axis=1)) return cropped_box, np.where(valid)[0] def _crop_image(self, img, crop): x1, y1, x2, y2 = crop return img[y1:y2, x1:x2, :] def _crop_segm(self, segm, crop): x1, y1, x2, y2 = crop return segm[:, y1:y2, x1:x2] @register_op class RandomScaledCrop(BaseOperator): """Resize image and bbox based on long side (with optional random scaling), then crop or pad image to target size. Args: target_dim (int): target size. scale_range (list): random scale range. interp (int): interpolation method, default to `cv2.INTER_LINEAR`. """ def __init__(self, target_dim=512, scale_range=[.1, 2.], interp=cv2.INTER_LINEAR): super(RandomScaledCrop, self).__init__() self.target_dim = target_dim self.scale_range = scale_range self.interp = interp def apply(self, sample, context=None): img = sample['image'] h, w = img.shape[:2] random_scale = np.random.uniform(*self.scale_range) dim = self.target_dim random_dim = int(dim * random_scale) dim_max = max(h, w) scale = random_dim / dim_max resize_w = w * scale resize_h = h * scale offset_x = int(max(0, np.random.uniform(0., resize_w - dim))) offset_y = int(max(0, np.random.uniform(0., resize_h - dim))) img = cv2.resize(img, (resize_w, resize_h), interpolation=self.interp) img = np.array(img) canvas = np.zeros((dim, dim, 3), dtype=img.dtype) canvas[:min(dim, resize_h), :min(dim, resize_w), :] = img[ offset_y:offset_y + dim, offset_x:offset_x + dim, :] sample['image'] = canvas sample['im_shape'] = np.asarray([resize_h, resize_w], dtype=np.float32) scale_factor = sample['sacle_factor'] sample['scale_factor'] = np.asarray( [scale_factor[0] * scale, scale_factor[1] * scale], dtype=np.float32) if 'gt_bbox' in sample and len(sample['gt_bbox']) > 0: scale_array = np.array([scale, scale] * 2, dtype=np.float32) shift_array = np.array([offset_x, offset_y] * 2, dtype=np.float32) boxes = sample['gt_bbox'] * scale_array - shift_array boxes = np.clip(boxes, 0, dim - 1) # filter boxes with no area area = np.prod(boxes[..., 2:] - boxes[..., :2], axis=1) valid = (area > 1.).nonzero()[0] sample['gt_bbox'] = boxes[valid] sample['gt_class'] = sample['gt_class'][valid] return sample @register_op class Cutmix(BaseOperator): def __init__(self, alpha=1.5, beta=1.5): """ CutMix: Regularization Strategy to Train Strong Classifiers with Localizable Features, see https://arxiv.org/abs/1905.04899 Cutmix image and gt_bbbox/gt_score Args: alpha (float): alpha parameter of beta distribute beta (float): beta parameter of beta distribute """ super(Cutmix, self).__init__() self.alpha = alpha self.beta = beta if self.alpha <= 0.0: raise ValueError("alpha shold be positive in {}".format(self)) if self.beta <= 0.0: raise ValueError("beta shold be positive in {}".format(self)) def apply_image(self, img1, img2, factor): """ _rand_bbox """ h = max(img1.shape[0], img2.shape[0]) w = max(img1.shape[1], img2.shape[1]) cut_rat = np.sqrt(1. - factor) cut_w = np.int(w * cut_rat) cut_h = np.int(h * cut_rat) # uniform cx = np.random.randint(w) cy = np.random.randint(h) bbx1 = np.clip(cx - cut_w // 2, 0, w - 1) bby1 = np.clip(cy - cut_h // 2, 0, h - 1) bbx2 = np.clip(cx + cut_w // 2, 0, w - 1) bby2 = np.clip(cy + cut_h // 2, 0, h - 1) img_1 = np.zeros((h, w, img1.shape[2]), 'float32') img_1[:img1.shape[0], :img1.shape[1], :] = \ img1.astype('float32') img_2 = np.zeros((h, w, img2.shape[2]), 'float32') img_2[:img2.shape[0], :img2.shape[1], :] = \ img2.astype('float32') img_1[bby1:bby2, bbx1:bbx2, :] = img2[bby1:bby2, bbx1:bbx2, :] return img_1 def __call__(self, sample, context=None): if not isinstance(sample, Sequence): return sample assert len(sample) == 2, 'cutmix need two samples' factor = np.random.beta(self.alpha, self.beta) factor = max(0.0, min(1.0, factor)) if factor >= 1.0: return sample[0] if factor <= 0.0: return sample[1] img1 = sample[0]['image'] img2 = sample[1]['image'] img = self.apply_image(img1, img2, factor) gt_bbox1 = sample[0]['gt_bbox'] gt_bbox2 = sample[1]['gt_bbox'] gt_bbox = np.concatenate((gt_bbox1, gt_bbox2), axis=0) gt_class1 = sample[0]['gt_class'] gt_class2 = sample[1]['gt_class'] gt_class = np.concatenate((gt_class1, gt_class2), axis=0) gt_score1 = sample[0]['gt_score'] gt_score2 = sample[1]['gt_score'] gt_score = np.concatenate( (gt_score1 * factor, gt_score2 * (1. - factor)), axis=0) sample = sample[0] sample['image'] = img sample['gt_bbox'] = gt_bbox sample['gt_score'] = gt_score sample['gt_class'] = gt_class return sample @register_op class Mixup(BaseOperator): def __init__(self, alpha=1.5, beta=1.5): """ Mixup image and gt_bbbox/gt_score Args: alpha (float): alpha parameter of beta distribute beta (float): beta parameter of beta distribute """ super(Mixup, self).__init__() self.alpha = alpha self.beta = beta if self.alpha <= 0.0: raise ValueError("alpha shold be positive in {}".format(self)) if self.beta <= 0.0: raise ValueError("beta shold be positive in {}".format(self)) def apply_image(self, img1, img2, factor): h = max(img1.shape[0], img2.shape[0]) w = max(img1.shape[1], img2.shape[1]) img = np.zeros((h, w, img1.shape[2]), 'float32') img[:img1.shape[0], :img1.shape[1], :] = \ img1.astype('float32') * factor img[:img2.shape[0], :img2.shape[1], :] += \ img2.astype('float32') * (1.0 - factor) return img.astype('uint8') def __call__(self, sample, context=None): if not isinstance(sample, Sequence): return sample assert len(sample) == 2, 'mixup need two samples' factor = np.random.beta(self.alpha, self.beta) factor = max(0.0, min(1.0, factor)) if factor >= 1.0: return sample[0] if factor <= 0.0: return sample[1] im = self.apply_image(sample[0]['image'], sample[1]['image'], factor) result = copy.deepcopy(sample[0]) result['image'] = im # apply bbox and score if 'gt_bbox' in sample[0]: gt_bbox1 = sample[0]['gt_bbox'] gt_bbox2 = sample[1]['gt_bbox'] gt_bbox = np.concatenate((gt_bbox1, gt_bbox2), axis=0) result['gt_bbox'] = gt_bbox if 'gt_class' in sample[0]: gt_class1 = sample[0]['gt_class'] gt_class2 = sample[1]['gt_class'] gt_class = np.concatenate((gt_class1, gt_class2), axis=0) result['gt_class'] = gt_class gt_score1 = np.ones_like(sample[0]['gt_class']) gt_score2 = np.ones_like(sample[1]['gt_class']) gt_score = np.concatenate( (gt_score1 * factor, gt_score2 * (1. - factor)), axis=0) result['gt_score'] = gt_score if 'is_crowd' in sample[0]: is_crowd1 = sample[0]['is_crowd'] is_crowd2 = sample[1]['is_crowd'] is_crowd = np.concatenate((is_crowd1, is_crowd2), axis=0) result['is_crowd'] = is_crowd if 'difficult' in sample[0]: is_difficult1 = sample[0]['difficult'] is_difficult2 = sample[1]['difficult'] is_difficult = np.concatenate( (is_difficult1, is_difficult2), axis=0) result['difficult'] = is_difficult return result @register_op class NormalizeBox(BaseOperator): """Transform the bounding box's coornidates to [0,1].""" def __init__(self): super(NormalizeBox, self).__init__() def apply(self, sample, context): im = sample['image'] gt_bbox = sample['gt_bbox'] height, width, _ = im.shape for i in range(gt_bbox.shape[0]): gt_bbox[i][0] = gt_bbox[i][0] / width gt_bbox[i][1] = gt_bbox[i][1] / height gt_bbox[i][2] = gt_bbox[i][2] / width gt_bbox[i][3] = gt_bbox[i][3] / height sample['gt_bbox'] = gt_bbox if 'gt_keypoint' in sample.keys(): gt_keypoint = sample['gt_keypoint'] for i in range(gt_keypoint.shape[1]): if i % 2: gt_keypoint[:, i] = gt_keypoint[:, i] / height else: gt_keypoint[:, i] = gt_keypoint[:, i] / width sample['gt_keypoint'] = gt_keypoint return sample @register_op class BboxXYXY2XYWH(BaseOperator): """ Convert bbox XYXY format to XYWH format. """ def __init__(self): super(BboxXYXY2XYWH, self).__init__() def apply(self, sample, context=None): assert 'gt_bbox' in sample bbox = sample['gt_bbox'] bbox[:, 2:4] = bbox[:, 2:4] - bbox[:, :2] bbox[:, :2] = bbox[:, :2] + bbox[:, 2:4] / 2. sample['gt_bbox'] = bbox return sample @register_op class PadBox(BaseOperator): def __init__(self, num_max_boxes=50): """ Pad zeros to bboxes if number of bboxes is less than num_max_boxes. Args: num_max_boxes (int): the max number of bboxes """ self.num_max_boxes = num_max_boxes super(PadBox, self).__init__() def apply(self, sample, context=None): assert 'gt_bbox' in sample bbox = sample['gt_bbox'] gt_num = min(self.num_max_boxes, len(bbox)) num_max = self.num_max_boxes # fields = context['fields'] if context else [] pad_bbox = np.zeros((num_max, 4), dtype=np.float32) if gt_num > 0: pad_bbox[:gt_num, :] = bbox[:gt_num, :] sample['gt_bbox'] = pad_bbox if 'gt_class' in sample: pad_class = np.zeros((num_max, ), dtype=np.int32) if gt_num > 0: pad_class[:gt_num] = sample['gt_class'][:gt_num, 0] sample['gt_class'] = pad_class if 'gt_score' in sample: pad_score = np.zeros((num_max, ), dtype=np.float32) if gt_num > 0: pad_score[:gt_num] = sample['gt_score'][:gt_num, 0] sample['gt_score'] = pad_score # in training, for example in op ExpandImage, # the bbox and gt_class is expandded, but the difficult is not, # so, judging by it's length if 'difficult' in sample: pad_diff = np.zeros((num_max, ), dtype=np.int32) if gt_num > 0: pad_diff[:gt_num] = sample['difficult'][:gt_num, 0] sample['difficult'] = pad_diff if 'is_crowd' in sample: pad_crowd = np.zeros((num_max, ), dtype=np.int32) if gt_num > 0: pad_crowd[:gt_num] = sample['is_crowd'][:gt_num, 0] sample['is_crowd'] = pad_crowd return sample @register_op class DebugVisibleImage(BaseOperator): """ In debug mode, visualize images according to `gt_box`. (Currently only supported when not cropping and flipping image.) """ def __init__(self, output_dir='output/debug', is_normalized=False): super(DebugVisibleImage, self).__init__() self.is_normalized = is_normalized self.output_dir = output_dir if not os.path.isdir(output_dir): os.makedirs(output_dir) if not isinstance(self.is_normalized, bool): raise TypeError("{}: input type is invalid.".format(self)) def apply(self, sample, context=None): image = Image.open(sample['im_file']).convert('RGB') out_file_name = sample['im_file'].split('/')[-1] width = sample['w'] height = sample['h'] gt_bbox = sample['gt_bbox'] gt_class = sample['gt_class'] draw = ImageDraw.Draw(image) for i in range(gt_bbox.shape[0]): if self.is_normalized: gt_bbox[i][0] = gt_bbox[i][0] * width gt_bbox[i][1] = gt_bbox[i][1] * height gt_bbox[i][2] = gt_bbox[i][2] * width gt_bbox[i][3] = gt_bbox[i][3] * height xmin, ymin, xmax, ymax = gt_bbox[i] draw.line( [(xmin, ymin), (xmin, ymax), (xmax, ymax), (xmax, ymin), (xmin, ymin)], width=2, fill='green') # draw label text = str(gt_class[i][0]) tw, th = draw.textsize(text) draw.rectangle( [(xmin + 1, ymin - th), (xmin + tw + 1, ymin)], fill='green') draw.text((xmin + 1, ymin - th), text, fill=(255, 255, 255)) if 'gt_keypoint' in sample.keys(): gt_keypoint = sample['gt_keypoint'] if self.is_normalized: for i in range(gt_keypoint.shape[1]): if i % 2: gt_keypoint[:, i] = gt_keypoint[:, i] * height else: gt_keypoint[:, i] = gt_keypoint[:, i] * width for i in range(gt_keypoint.shape[0]): keypoint = gt_keypoint[i] for j in range(int(keypoint.shape[0] / 2)): x1 = round(keypoint[2 * j]).astype(np.int32) y1 = round(keypoint[2 * j + 1]).astype(np.int32) draw.ellipse( (x1, y1, x1 + 5, y1 + 5), fill='green', outline='green') save_path = os.path.join(self.output_dir, out_file_name) image.save(save_path, quality=95) return sample @register_op class Pad(BaseOperator): def __init__(self, size=None, size_divisor=32, pad_mode=0, offsets=None, fill_value=(127.5, 127.5, 127.5)): """ Pad image to a specified size or multiple of size_divisor. Args: size (int, Sequence): image target size, if None, pad to multiple of size_divisor, default None size_divisor (int): size divisor, default 32 pad_mode (int): pad mode, currently only supports four modes [-1, 0, 1, 2]. if -1, use specified offsets if 0, only pad to right and bottom. if 1, pad according to center. if 2, only pad left and top offsets (list): [offset_x, offset_y], specify offset while padding, only supported pad_mode=-1 fill_value (bool): rgb value of pad area, default (127.5, 127.5, 127.5) """ super(Pad, self).__init__() if not isinstance(size, (int, Sequence)): raise TypeError( "Type of target_size is invalid when random_size is True. \ Must be List, now is {}".format(type(size))) if isinstance(size, int): size = [size, size] assert pad_mode in [ -1, 0, 1, 2 ], 'currently only supports four modes [-1, 0, 1, 2]' assert pad_mode == -1 and offsets, 'if pad_mode is -1, offsets should not be None' self.size = size self.size_divisor = size_divisor self.pad_mode = pad_mode self.fill_value = fill_value self.offsets = offsets def apply_segm(self, segms, offsets, im_size, size): def _expand_poly(poly, x, y): expanded_poly = np.array(poly) expanded_poly[0::2] += x expanded_poly[1::2] += y return expanded_poly.tolist() def _expand_rle(rle, x, y, height, width, h, w): if 'counts' in rle and type(rle['counts']) == list: rle = mask_util.frPyObjects(rle, height, width) mask = mask_util.decode(rle) expanded_mask = np.full((h, w), 0).astype(mask.dtype) expanded_mask[y:y + height, x:x + width] = mask rle = mask_util.encode( np.array( expanded_mask, order='F', dtype=np.uint8)) return rle x, y = offsets height, width = im_size h, w = size expanded_segms = [] for segm in segms: if is_poly(segm): # Polygon format expanded_segms.append( [_expand_poly(poly, x, y) for poly in segm]) else: # RLE format import pycocotools.mask as mask_util expanded_segms.append( _expand_rle(segm, x, y, height, width, h, w)) return expanded_segms def apply_bbox(self, bbox, offsets): return bbox + np.array(offsets * 2, dtype=np.float32) def apply_keypoint(self, keypoints, offsets): n = len(keypoints[0]) // 2 return keypoints + np.array(offsets * n, dtype=np.float32) def apply_image(self, image, offsets, im_size, size): x, y = offsets im_h, im_w = im_size h, w = size canvas = np.ones((h, w, 3), dtype=np.float32) canvas *= np.array(self.fill_value, dtype=np.float32) canvas[y:y + im_h, x:x + im_w, :] = image.astype(np.float32) return canvas def apply(self, sample, context=None): im = sample['image'] im_h, im_w = im.shape[:2] if self.size: h, w = self.size assert ( im_h < h and im_w < w ), '(h, w) of target size should be greater than (im_h, im_w)' else: h = np.ceil(im_h // self.size_divisor) * self.size_divisor w = np.ceil(im_w / self.size_divisor) * self.size_divisor if h == im_h and w == im_w: return sample if self.pad_mode == -1: offset_x, offset_y = self.offsets elif self.pad_mode == 0: offset_y, offset_x = 0, 0 elif self.pad_mode == 1: offset_y, offset_x = (h - im_h) // 2, (w - im_w) // 2 else: offset_y, offset_x = h - im_h, w - im_w offsets, im_size, size = [offset_x, offset_y], [im_h, im_w], [h, w] sample['image'] = self.apply_image(im, offsets, im_size, size) if self.pad_mode == 0: return sample if 'gt_bbox' in sample and len(sample['gt_bbox']) > 0: sample['gt_bbox'] = self.apply_bbox(sample['gt_bbox'], offsets) if 'gt_poly' in sample and len(sample['gt_poly']) > 0: sample['gt_poly'] = self.apply_segm(sample['gt_poly'], offsets, im_size, size) if 'gt_keypoint' in sample and len(sample['gt_keypoint']) > 0: sample['gt_keypoint'] = self.apply_keypoint(sample['gt_keypoint'], offsets) return sample @register_op class Poly2Mask(BaseOperator): """ gt poly to mask annotations """ def __init__(self): super(Poly2Mask, self).__init__() import pycocotools.mask as maskUtils self.maskutils = maskUtils def _poly2mask(self, mask_ann, img_h, img_w): if isinstance(mask_ann, list): # polygon -- a single object might consist of multiple parts # we merge all parts into one mask rle code rles = self.maskutils.frPyObjects(mask_ann, img_h, img_w) rle = self.maskutils.merge(rles) elif isinstance(mask_ann['counts'], list): # uncompressed RLE rle = self.maskutils.frPyObjects(mask_ann, img_h, img_w) else: # rle rle = mask_ann mask = self.maskutils.decode(rle) return mask def apply(self, sample, context=None): assert 'gt_poly' in sample im_h = sample['h'] im_w = sample['w'] masks = [ self._poly2mask(gt_poly, im_h, im_w) for gt_poly in sample['gt_poly'] ] sample['gt_segm'] = np.asarray(masks).astype(np.uint8) return sample @register_op class Rbox2Poly(BaseOperator): """ Convert rbbox format to poly format. """ def __init__(self): super(Rbox2Poly, self).__init__() def apply(self, sample, context=None): assert 'gt_rbox' in sample assert sample['gt_rbox'].shape[1] == 5 rrect = sample['gt_rbox'] bbox_num = rrect.shape[0] x_ctr = rrect[:, 0] y_ctr = rrect[:, 1] width = rrect[:, 2] height = rrect[:, 3] angle = rrect[:, 4] tl_x, tl_y, br_x, br_y = -width / 2, -height / 2, width / 2, height / 2 # rect 2x4 rect = np.array([[tl_x, br_x, br_x, tl_x], [tl_y, tl_y, br_y, br_y]]) R = np.array([[np.cos(angle), -np.sin(angle)], [np.sin(angle), np.cos(angle)]]) poly = [] for i in range(R.shape[2]): tmp_r = R[:, :, i].reshape(2, 2) poly.append(tmp_r.dot(rect[:, :, i])) # poly:[M, 2, 4] poly = np.array(poly) coor_x = poly[:, 0, :4] + x_ctr.reshape(bbox_num, 1) coor_y = poly[:, 1, :4] + y_ctr.reshape(bbox_num, 1) poly = np.stack( [ coor_x[:, 0], coor_y[:, 0], coor_x[:, 1], coor_y[:, 1], coor_x[:, 2], coor_y[:, 2], coor_x[:, 3], coor_y[:, 3] ], axis=1) x1 = x_ctr - width / 2.0 y1 = y_ctr - height / 2.0 x2 = x_ctr + width / 2.0 y2 = y_ctr + height / 2.0 sample['gt_bbox'] = np.stack([x1, y1, x2, y2], axis=1) sample['gt_rbox2poly'] = poly return sample @register_op class Poly2Rbox(BaseOperator): """ Convert poly format to rbbox format. """ def __init__(self): super(Poly2Rbox, self).__init__() def poly_to_rbox(self, polys): """ poly:[x0,y0,x1,y1,x2,y2,x3,y3] to rotated_boxes:[x_ctr,y_ctr,w,h,angle] """ rotated_boxes = [] for poly in polys: poly = np.array(poly[:8], dtype=np.float32) pt1 = (poly[0], poly[1]) pt2 = (poly[2], poly[3]) pt3 = (poly[4], poly[5]) pt4 = (poly[6], poly[7]) edge1 = np.sqrt((pt1[0] - pt2[0]) * (pt1[0] - pt2[0]) + (pt1[ 1] - pt2[1]) * (pt1[1] - pt2[1])) edge2 = np.sqrt((pt2[0] - pt3[0]) * (pt2[0] - pt3[0]) + (pt2[ 1] - pt3[1]) * (pt2[1] - pt3[1])) width = max(edge1, edge2) height = min(edge1, edge2) angle = 0 if edge1 > edge2: angle = np.arctan2( np.float(pt2[1] - pt1[1]), np.float(pt2[0] - pt1[0])) elif edge2 >= edge1: angle = np.arctan2( np.float(pt4[1] - pt1[1]), np.float(pt4[0] - pt1[0])) def norm_angle(angle, range=[-np.pi / 4, np.pi]): return (angle - range[0]) % range[1] + range[0] angle = norm_angle(angle) x_ctr = np.float(pt1[0] + pt3[0]) / 2 y_ctr = np.float(pt1[1] + pt3[1]) / 2 rotated_box = np.array([x_ctr, y_ctr, width, height, angle]) rotated_boxes.append(rotated_box) ret_rotated_boxes = np.array(rotated_boxes) assert ret_rotated_boxes.shape[1] == 5 return ret_rotated_boxes def apply(self, sample, context=None): assert 'gt_rbox2poly' in sample poly = sample['gt_rbox2poly'] rbox = self.poly_to_rbox(poly) sample['gt_rbox'] = rbox return sample