# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function from six.moves import reduce from .. import core from ..layers import utils from . import layers from ..framework import Variable, OpProtoHolder from ..param_attr import ParamAttr from ..initializer import Normal, Constant __all__ = ['Conv2D', 'Pool2D', 'FC', 'EMBEDDING'] class Conv2D(layers.Layer): def __init__(self, num_channels, num_filters, filter_size, stride=1, padding=0, dilation=1, groups=None, use_cudnn=True, act=None, param_attr=None, bias_attr=None, name=None, dtype=core.VarDesc.VarType.FP32): assert param_attr is not False, "param_attr should not be False here." super(Conv2D, self).__init__(name=name, dtype=dtype) # TODO(minqiyang): Move this to the top. from ..layer_helper import LayerHelper self._helper = LayerHelper( type(self).__name__, param_attr=param_attr, bias_attr=bias_attr, dtype=dtype, name=name) self._groups = groups self._stride = utils.convert_to_list(stride, 2, 'stride') self._padding = utils.convert_to_list(padding, 2, 'padding') self._dilation = utils.convert_to_list(dilation, 2, 'dilation') if not isinstance(use_cudnn, bool): raise ValueError("use_cudnn should be True or False") self._use_cudnn = use_cudnn self._num_channels = num_channels if (self._num_channels == self._groups and num_filters % self._num_channels == 0 and not self._use_cudnn): self._l_type = 'depthwise_conv2d' else: self._l_type = 'conv2d' if groups is None: num_filter_channels = num_channels else: if num_channels % groups != 0: raise ValueError("num_channels must be divisible by groups.") num_filter_channels = num_channels // groups filter_size = utils.convert_to_list(filter_size, 2, 'filter_size') filter_shape = [num_filters, int(num_filter_channels)] + filter_size def _get_default_param_initializer(): filter_elem_num = filter_size[0] * filter_size[1] * num_channels std = (2.0 / filter_elem_num)**0.5 return Normal(0.0, std, 0) self._filter_param = self._helper.create_parameter( attr=self._helper.param_attr, shape=filter_shape, dtype=self._dtype, default_initializer=_get_default_param_initializer()) if self._use_cudnn: self._helper.create_variable( name="kCUDNNFwdAlgoCache", persistable=True, type=core.VarDesc.VarType.RAW) self._helper.create_variable( name="kCUDNNBwdDataAlgoCache", persistable=True, type=core.VarDesc.VarType.RAW) self._helper.create_variable( name="kCUDNNBwdFilterAlgoCache", persistable=True, type=core.VarDesc.VarType.RAW) self._bias_param = self._helper.create_parameter( attr=self._helper.bias_attr, shape=[num_filters], dtype=self._dtype, is_bias=True) def forward(self, input): pre_bias = self._helper.create_variable_for_type_inference( dtype=self._dtype) self._helper.append_op( type=self._l_type, inputs={ 'Input': input, 'Filter': self._filter_param, }, outputs={"Output": pre_bias}, attrs={ 'strides': self._stride, 'paddings': self._padding, 'dilations': self._dilation, 'groups': self._groups, 'use_cudnn': self._use_cudnn, 'use_mkldnn': False, }) pre_act = self._helper.create_variable_for_type_inference( dtype=self._dtype) self._helper.append_op( type='elementwise_add', inputs={'X': [pre_bias], 'Y': [self._bias_param]}, outputs={'Out': [pre_act]}, attrs={'axis': 1}) return self._helper.append_activation(pre_act) class Pool2D(layers.Layer): def __init__(self, pool_size=-1, pool_type="max", pool_stride=1, pool_padding=0, global_pooling=False, use_cudnn=True, ceil_mode=False, exclusive=True, name=None, dtype=core.VarDesc.VarType.FP32): if pool_type not in ["max", "avg"]: raise ValueError( "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.", str(pool_type)) if global_pooling is False and pool_size == -1: raise ValueError( "When the global_pooling is False, pool_size must be passed " "and be a valid value. Received pool_size: " + str(pool_size)) if not isinstance(use_cudnn, bool): raise ValueError("use_cudnn should be True or False") super(Pool2D, self).__init__(name=name, dtype=dtype) from ..layer_helper import LayerHelper self._helper = LayerHelper(type(self).__name__, dtype=dtype, name=name) self._pool_type = pool_type self._pool_size = utils.convert_to_list(pool_size, 2, 'pool_size') self._pool_padding = utils.convert_to_list(pool_padding, 2, 'pool_padding') self._pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride') self._global_pooling = global_pooling self._use_cudnn = use_cudnn self._ceil_mode = ceil_mode self._exclusive = exclusive self._l_type = 'pool2d' def forward(self, input): pool_out = self._helper.create_variable_for_type_inference(self._dtype) self._helper.append_op( type=self._l_type, inputs={"X": input}, outputs={"Out": pool_out}, attrs={ "pooling_type": self._pool_type, "ksize": self._pool_size, "global_pooling": self._global_pooling, "strides": self._pool_stride, "paddings": self._pool_padding, "use_cudnn": self._use_cudnn, "ceil_mode": self._ceil_mode, "use_mkldnn": False, "exclusive": self._exclusive, }) return pool_out class FC(layers.Layer): def __init__(self, size, param_attr=None, bias_attr=None, num_flatten_dims=1, dtype=core.VarDesc.VarType.FP32, act=None, name=None): super(FC, self).__init__() self._size = size self._num_flatten_dims = num_flatten_dims self._dtype = dtype from ..layer_helper import LayerHelper self._helper = LayerHelper( 'FC', param_attr=param_attr, bias_attr=bias_attr, act=act, name=name) def parameters(self): return [self._w, self._b] def _build_once(self, input): input_shape = input.shape param_shape = [ reduce(lambda a, b: a * b, input_shape[self._num_flatten_dims:], 1) ] + [self._size] self._w = self._helper.create_parameter( attr=self._helper.param_attr, shape=param_shape, dtype=self._dtype, is_bias=False) def forward(self, input): tmp = self._helper.create_variable_for_type_inference(self._dtype) self._helper.append_op( type="mul", inputs={"X": input, "Y": self._w}, outputs={"Out": tmp}, attrs={ "x_num_col_dims": self._num_flatten_dims, "y_num_col_dims": 1 }) out = self._helper.create_variable_for_type_inference(self._dtype) self._helper.append_op( type="sum", inputs={"X": [tmp]}, outputs={"Out": out}, attrs={"use_mkldnn": False}) bias_attr = self._helper.bias_attr if bias_attr: # add bias size = list(out.shape[1:]) if not self._built: self._b = self._helper.create_parameter( attr=bias_attr, shape=size, dtype=out.dtype, is_bias=True) bias_out = self._helper.create_variable_for_type_inference( dtype=out.dtype) self._helper.append_op( type='elementwise_add', inputs={'X': [out], 'Y': [self._b]}, outputs={'Out': [bias_out]}, attrs={'axis': 1}) out = bias_out # add activation return self._helper.append_activation(out) class EMBEDDING(layers.Layer): def __init__(self, size, is_sparse=False, is_distributed=False, padding_idx=None, param_attr=None, dtype='float32'): super(EMBEDDING, self).__init__() self._size = size self._is_sparse = is_sparse self._is_distributed = is_distributed self._padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else ( size[0] + padding_idx) self._param_attr = param_attr self._dtype = dtype self._remote_prefetch = self._is_sparse and (not self._is_distributed) if self._remote_prefetch: assert self._is_sparse is True and self._is_distributed is False from ..layer_helper import LayerHelper self._helper = LayerHelper('embedding', param_attr=param_attr) def _build_once(self, input): self._w = self._helper.create_parameter( attr=self._param_attr, shape=self._size, dtype=self._dtype, is_bias=False) def forward(self, input): out = self._helper.create_variable_for_type_inference(self._dtype) self._helper.append_op( type='lookup_table', inputs={'Ids': input, 'W': self._w}, outputs={'Out': out}, attrs={ 'is_sparse': self._is_sparse, 'is_distributed': self._is_distributed, 'remote_prefetch': self._remote_prefetch, 'padding_idx': self._padding_idx }) return out