// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/fluid/inference/tests/api/tester_helper.h" namespace paddle { namespace inference { struct DataRecord { std::vector> query_basic, query_phrase, title_basic, title_phrase; std::vector lod1, lod2, lod3, lod4; size_t batch_iter{0}, batch_size{1}, num_samples; // total number of samples DataRecord() = default; explicit DataRecord(const std::string &path, int batch_size = 1) : batch_size(batch_size) { Load(path); } DataRecord NextBatch() { DataRecord data; size_t batch_end = batch_iter + batch_size; // NOTE skip the final batch, if no enough data is provided. if (batch_end <= query_basic.size()) { GetInputPerBatch(query_basic, &data.query_basic, &data.lod1, batch_iter, batch_end); GetInputPerBatch(query_phrase, &data.query_phrase, &data.lod2, batch_iter, batch_end); GetInputPerBatch(title_basic, &data.title_basic, &data.lod3, batch_iter, batch_end); GetInputPerBatch(title_phrase, &data.title_phrase, &data.lod4, batch_iter, batch_end); } batch_iter += batch_size; return data; } void Load(const std::string &path) { std::ifstream file(path); std::string line; int num_lines = 0; while (std::getline(file, line)) { std::vector data; split(line, ';', &data); // load query data std::vector query_basic_data; split_to_int64(data[1], ' ', &query_basic_data); std::vector query_phrase_data; split_to_int64(data[2], ' ', &query_phrase_data); // load title data std::vector title_basic_data; split_to_int64(data[3], ' ', &title_basic_data); std::vector title_phrase_data; split_to_int64(data[4], ' ', &title_phrase_data); // filter the empty data bool flag = data[1].size() && data[2].size() && data[3].size() && data[4].size(); if (flag) { query_basic.push_back(std::move(query_basic_data)); query_phrase.push_back(std::move(query_phrase_data)); title_basic.push_back(std::move(title_basic_data)); title_phrase.push_back(std::move(title_phrase_data)); num_lines++; } } num_samples = num_lines; } }; void PrepareInputs(std::vector *input_slots, DataRecord *data, int batch_size) { PaddleTensor query_basic_tensor, query_phrase_tensor, title_basic_tensor, title_phrase_tensor; query_basic_tensor.name = "query_basic"; query_phrase_tensor.name = "query_phrase"; title_basic_tensor.name = "pos_title_basic"; title_phrase_tensor.name = "pos_title_phrase"; auto one_batch = data->NextBatch(); // assign data TensorAssignData(&query_basic_tensor, one_batch.query_basic, one_batch.lod1); TensorAssignData(&query_phrase_tensor, one_batch.query_phrase, one_batch.lod2); TensorAssignData(&title_basic_tensor, one_batch.title_basic, one_batch.lod3); TensorAssignData(&title_phrase_tensor, one_batch.title_phrase, one_batch.lod4); // Set inputs. input_slots->assign({query_basic_tensor, query_phrase_tensor, title_basic_tensor, title_phrase_tensor}); for (auto &tensor : *input_slots) { tensor.dtype = PaddleDType::INT64; } } void SetConfig(AnalysisConfig *cfg) { cfg->SetModel(FLAGS_infer_model); cfg->DisableGpu(); cfg->SwitchSpecifyInputNames(); cfg->SwitchIrOptim(); if (FLAGS_zero_copy) { cfg->SwitchUseFeedFetchOps(false); } } void SetInput(std::vector> *inputs) { DataRecord data(FLAGS_infer_data, FLAGS_batch_size); std::vector input_slots; int epoch = FLAGS_test_all_data ? data.num_samples / FLAGS_batch_size : 1; LOG(INFO) << "number of samples: " << epoch * FLAGS_batch_size; for (int bid = 0; bid < epoch; ++bid) { PrepareInputs(&input_slots, &data, FLAGS_batch_size); (*inputs).emplace_back(input_slots); } } // Easy for profiling independently. TEST(Analyzer_Pyramid_DNN, profile) { AnalysisConfig cfg; SetConfig(&cfg); std::vector outputs; std::vector> input_slots_all; SetInput(&input_slots_all); TestPrediction(reinterpret_cast(&cfg), input_slots_all, &outputs, FLAGS_num_threads); if (FLAGS_num_threads == 1 && !FLAGS_test_all_data && !FLAGS_zero_copy) { PADDLE_ENFORCE_EQ(outputs.size(), 1UL); size_t size = GetSize(outputs[0]); PADDLE_ENFORCE_GT(size, 0); float *result = static_cast(outputs[0].data.data()); // output is probability, which is in (0, 1). for (size_t i = 0; i < size; i++) { EXPECT_GT(result[i], 0); EXPECT_LT(result[i], 1); } } } // Check the fuse status TEST(Analyzer_Pyramid_DNN, fuse_statis) { AnalysisConfig cfg; SetConfig(&cfg); int num_ops; auto predictor = CreatePaddlePredictor(cfg); auto fuse_statis = GetFuseStatis( static_cast(predictor.get()), &num_ops); } // Compare result of NativeConfig and AnalysisConfig TEST(Analyzer_Pyramid_DNN, compare) { AnalysisConfig cfg; SetConfig(&cfg); std::vector> input_slots_all; SetInput(&input_slots_all); CompareNativeAndAnalysis( reinterpret_cast(&cfg), input_slots_all); } // Compare result of AnalysisConfig and AnalysisConfig + ZeroCopy TEST(Analyzer_Pyramid_DNN, compare_zero_copy) { AnalysisConfig cfg; SetConfig(&cfg); std::vector> input_slots_all; SetInput(&input_slots_all); std::vector outputs_name; outputs_name.emplace_back("cos_sim_2.tmp_0"); CompareAnalysisAndZeroCopy(reinterpret_cast(&cfg), input_slots_all, outputs_name); } // Compare Deterministic result TEST(Analyzer_Pyramid_DNN, compare_determine) { AnalysisConfig cfg; SetConfig(&cfg); std::vector> input_slots_all; SetInput(&input_slots_all); CompareDeterministic(reinterpret_cast(&cfg), input_slots_all); } } // namespace inference } // namespace paddle