import unittest import numpy as np from op_test import OpTest def unpool2dmax_forward_naive(input, indices, ksize, strides, paddings): s0, s1, s2, s3 = input.shape out_H=(s2 - 1) * strides[0] - 2 * paddings[0] + ksize[0] out_W=(s2 - 1) * strides[1] - 2 * paddings[1] + ksize[1] out = np.zeros((s0, s1, out_H, out_W)) for nidx in xrange(s0): for cidx in xrange(s1): for h in xrange(s2): for w in xrange(s3): index = indices[nidx, cidx, h, w] hidx = (index - index % out_W) / out_W widx = index % out_W out[nidx, cidx, int(hidx), int(widx)] = input[nidx, cidx, h, w] return out class TestUnpoolOp(OpTest): def setUp(self): self.op_type = "unpool" self.init_test_case() pre_input = np.random.random(self.shape).astype("float32") N, C, H, W = pre_input.shape H_out = (H - self.ksize[0] + 2 * self.paddings[0]) / self.strides[0] + 1 W_out = (W - self.ksize[1] + 2 * self.paddings[1]) / self.strides[1] + 1 input = np.zeros((N, C, H_out, W_out)) indices = np.zeros((N, C, H_out, W_out)) for i in xrange(H_out): for j in xrange(W_out): r_start = np.max((i * self.strides[0] - self.paddings[0], 0)) r_end = np.min((i * self.strides[0] + self.ksize[0] - self.paddings[0], H)) c_start = np.max((j * self.strides[1] - self.paddings[1], 0)) c_end = np.min((j * self.strides[1] + self.ksize[1] - self.paddings[1], W)) for nidx in xrange(N): for cidx in xrange(C): x_masked = pre_input[nidx, cidx, r_start:r_end, c_start:c_end] input[nidx, cidx, i, j] = x_masked.max() arg = x_masked.argmax() indices[nidx, cidx, i, j] = (r_start + arg / self.ksize[1]) * W + c_start + arg % self.ksize[1] output = self.Unpool2d_forward_naive(input, indices, self.ksize, self.strides, self.paddings).astype("float32") self.inputs = {'X': input.astype('float32'), 'Y': indices.astype('int16')} self.attrs = { 'strides': self.strides, 'paddings': self.paddings, 'ksize': self.ksize, 'unpoolingtype': self.unpoolingtype, } self.outputs = {'Out': output.astype('float32')} def test_check_output(self): print self.inputs['X'] print self.inputs['Y'] print self.outputs['Out'] self.check_output() def test_check_grad(self): self.check_grad(['X'], 'Out', max_relative_error=0.5) def init_test_case(self): self.Unpool2d_forward_naive = unpool2dmax_forward_naive self.unpoolingtype = "max" self.shape = [6, 4, 5, 5] self.ksize = [3, 3] self.strides = [2, 2] self.paddings = [0, 0] if __name__ == '__main__': unittest.main()