# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function from ppdet.core.workspace import register, create from .meta_arch import BaseArch __all__ = ['BlazeFace'] @register class BlazeFace(BaseArch): """ BlazeFace: Sub-millisecond Neural Face Detection on Mobile GPUs, see https://arxiv.org/abs/1907.05047 Args: backbone (nn.Layer): backbone instance neck (nn.Layer): neck instance blaze_head (nn.Layer): `blazeHead` instance post_process (object): `BBoxPostProcess` instance """ __category__ = 'architecture' __inject__ = ['post_process'] def __init__(self, backbone, blaze_head, neck, post_process): super(BlazeFace, self).__init__() self.backbone = backbone self.neck = neck self.blaze_head = blaze_head self.post_process = post_process @classmethod def from_config(cls, cfg, *args, **kwargs): # backbone backbone = create(cfg['backbone']) # fpn kwargs = {'input_shape': backbone.out_shape} neck = create(cfg['neck'], **kwargs) # head kwargs = {'input_shape': neck.out_shape} blaze_head = create(cfg['blaze_head'], **kwargs) return { 'backbone': backbone, 'neck': neck, 'blaze_head': blaze_head, } def _forward(self): # Backbone body_feats = self.backbone(self.inputs) # neck neck_feats = self.neck(body_feats) # blaze Head if self.training: return self.blaze_head(neck_feats, self.inputs['image'], self.inputs['gt_bbox'], self.inputs['gt_class']) else: preds, anchors = self.blaze_head(neck_feats, self.inputs['image']) bbox, bbox_num, before_nms_indexes = self.post_process( preds, anchors, self.inputs['im_shape'], self.inputs['scale_factor']) return bbox, bbox_num def get_loss(self, ): return {"loss": self._forward()} def get_pred(self): bbox_pred, bbox_num = self._forward() output = { "bbox": bbox_pred, "bbox_num": bbox_num, } return output