/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include #include #include // NOLINT #include "gflags/gflags.h" #include "paddle/fluid/inference/api/api_impl.h" #include "paddle/fluid/inference/tests/test_helper.h" #ifdef __clang__ #define ACC_DIFF 4e-3 #else #define ACC_DIFF 1e-3 #endif DEFINE_string(word2vec_dirname, "", "Directory of the word2vec inference model."); DEFINE_string(book_dirname, "", "Directory of the book inference model."); namespace paddle { PaddleTensor LodTensorToPaddleTensor(framework::LoDTensor* t) { PaddleTensor pt; if (t->type() == typeid(int64_t)) { pt.data.Reset(t->data(), t->numel() * sizeof(int64_t)); pt.dtype = PaddleDType::INT64; } else if (t->type() == typeid(float)) { pt.data.Reset(t->data(), t->numel() * sizeof(float)); pt.dtype = PaddleDType::FLOAT32; } else { LOG(FATAL) << "unsupported type."; } pt.shape = framework::vectorize2int(t->dims()); return pt; } NativeConfig GetConfig() { NativeConfig config; config.model_dir = FLAGS_word2vec_dirname; LOG(INFO) << "dirname " << config.model_dir; config.fraction_of_gpu_memory = 0.15; #ifdef PADDLE_WITH_CUDA config.use_gpu = true; #else config.use_gpu = false; #endif config.device = 0; return config; } void MainWord2Vec(bool use_gpu) { NativeConfig config = GetConfig(); auto predictor = CreatePaddlePredictor(config); config.use_gpu = use_gpu; framework::LoDTensor first_word, second_word, third_word, fourth_word; framework::LoD lod{{0, 1}}; int64_t dict_size = 2073; // The size of dictionary SetupLoDTensor(&first_word, lod, static_cast(0), dict_size - 1); SetupLoDTensor(&second_word, lod, static_cast(0), dict_size - 1); SetupLoDTensor(&third_word, lod, static_cast(0), dict_size - 1); SetupLoDTensor(&fourth_word, lod, static_cast(0), dict_size - 1); std::vector paddle_tensor_feeds; paddle_tensor_feeds.push_back(LodTensorToPaddleTensor(&first_word)); paddle_tensor_feeds.push_back(LodTensorToPaddleTensor(&second_word)); paddle_tensor_feeds.push_back(LodTensorToPaddleTensor(&third_word)); paddle_tensor_feeds.push_back(LodTensorToPaddleTensor(&fourth_word)); std::vector outputs; ASSERT_TRUE(predictor->Run(paddle_tensor_feeds, &outputs)); ASSERT_EQ(outputs.size(), 1UL); size_t len = outputs[0].data.length(); float* data = static_cast(outputs[0].data.data()); for (size_t j = 0; j < len / sizeof(float); ++j) { ASSERT_LT(data[j], 1.0); ASSERT_GT(data[j], -1.0); } std::vector cpu_feeds; cpu_feeds.push_back(&first_word); cpu_feeds.push_back(&second_word); cpu_feeds.push_back(&third_word); cpu_feeds.push_back(&fourth_word); framework::LoDTensor output1; std::vector cpu_fetchs1; cpu_fetchs1.push_back(&output1); TestInference(config.model_dir, cpu_feeds, cpu_fetchs1); float* lod_data = output1.data(); for (int i = 0; i < output1.numel(); ++i) { EXPECT_LT(lod_data[i] - data[i], ACC_DIFF); EXPECT_GT(lod_data[i] - data[i], -ACC_DIFF); } } void MainImageClassification(bool use_gpu) { int batch_size = 2; bool repeat = false; NativeConfig config = GetConfig(); config.use_gpu = use_gpu; config.model_dir = FLAGS_book_dirname + "/image_classification_resnet.inference.model"; const bool is_combined = false; std::vector> feed_target_shapes = GetFeedTargetShapes(config.model_dir, is_combined); framework::LoDTensor input; // Use normilized image pixels as input data, // which should be in the range [0.0, 1.0]. feed_target_shapes[0][0] = batch_size; framework::DDim input_dims = framework::make_ddim(feed_target_shapes[0]); SetupTensor(&input, input_dims, static_cast(0), static_cast(1)); std::vector cpu_feeds; cpu_feeds.push_back(&input); framework::LoDTensor output1; std::vector cpu_fetchs1; cpu_fetchs1.push_back(&output1); TestInference( config.model_dir, cpu_feeds, cpu_fetchs1, repeat, is_combined); auto predictor = CreatePaddlePredictor(config); std::vector paddle_tensor_feeds; paddle_tensor_feeds.push_back(LodTensorToPaddleTensor(&input)); std::vector outputs; ASSERT_TRUE(predictor->Run(paddle_tensor_feeds, &outputs)); ASSERT_EQ(outputs.size(), 1UL); size_t len = outputs[0].data.length(); float* data = static_cast(outputs[0].data.data()); float* lod_data = output1.data(); for (size_t j = 0; j < len / sizeof(float); ++j) { EXPECT_NEAR(lod_data[j], data[j], ACC_DIFF); } } void MainThreadsWord2Vec(bool use_gpu) { NativeConfig config = GetConfig(); config.use_gpu = use_gpu; auto main_predictor = CreatePaddlePredictor(config); // prepare inputs data and reference results constexpr int num_jobs = 3; std::vector> jobs(num_jobs); std::vector> paddle_tensor_feeds(num_jobs); std::vector refs(num_jobs); for (size_t i = 0; i < jobs.size(); ++i) { // each job has 4 words jobs[i].resize(4); for (size_t j = 0; j < 4; ++j) { framework::LoD lod{{0, 1}}; int64_t dict_size = 2073; // The size of dictionary SetupLoDTensor(&jobs[i][j], lod, static_cast(0), dict_size - 1); paddle_tensor_feeds[i].push_back(LodTensorToPaddleTensor(&jobs[i][j])); } // get reference result of each job std::vector ref_feeds; std::vector ref_fetches(1, &refs[i]); for (auto& word : jobs[i]) { ref_feeds.push_back(&word); } TestInference(config.model_dir, ref_feeds, ref_fetches); } // create threads and each thread run 1 job std::vector threads; for (int tid = 0; tid < num_jobs; ++tid) { threads.emplace_back([&, tid]() { auto predictor = CreatePaddlePredictor(config); auto& local_inputs = paddle_tensor_feeds[tid]; std::vector local_outputs; ASSERT_TRUE(predictor->Run(local_inputs, &local_outputs)); // check outputs range ASSERT_EQ(local_outputs.size(), 1UL); const size_t len = local_outputs[0].data.length(); float* data = static_cast(local_outputs[0].data.data()); for (size_t j = 0; j < len / sizeof(float); ++j) { ASSERT_LT(data[j], 1.0); ASSERT_GT(data[j], -1.0); } // check outputs correctness float* ref_data = refs[tid].data(); EXPECT_EQ(refs[tid].numel(), static_cast(len / sizeof(float))); for (int i = 0; i < refs[tid].numel(); ++i) { EXPECT_NEAR(ref_data[i], data[i], 2e-3); } }); } for (int i = 0; i < num_jobs; ++i) { threads[i].join(); } } void MainThreadsImageClassification(bool use_gpu) { constexpr int num_jobs = 4; // each job run 1 batch constexpr int batch_size = 1; NativeConfig config = GetConfig(); config.use_gpu = use_gpu; config.model_dir = FLAGS_book_dirname + "/image_classification_resnet.inference.model"; auto main_predictor = CreatePaddlePredictor(config); std::vector jobs(num_jobs); std::vector> paddle_tensor_feeds(num_jobs); std::vector refs(num_jobs); for (size_t i = 0; i < jobs.size(); ++i) { // prepare inputs std::vector> feed_target_shapes = GetFeedTargetShapes(config.model_dir, /*is_combined*/ false); feed_target_shapes[0][0] = batch_size; framework::DDim input_dims = framework::make_ddim(feed_target_shapes[0]); SetupTensor(&jobs[i], input_dims, 0.f, 1.f); paddle_tensor_feeds[i].push_back(LodTensorToPaddleTensor(&jobs[i])); // get reference result of each job std::vector ref_feeds(1, &jobs[i]); std::vector ref_fetches(1, &refs[i]); TestInference(config.model_dir, ref_feeds, ref_fetches); } // create threads and each thread run 1 job std::vector threads; for (int tid = 0; tid < num_jobs; ++tid) { threads.emplace_back([&, tid]() { auto predictor = CreatePaddlePredictor(config); auto& local_inputs = paddle_tensor_feeds[tid]; std::vector local_outputs; ASSERT_TRUE(predictor->Run(local_inputs, &local_outputs)); // check outputs correctness ASSERT_EQ(local_outputs.size(), 1UL); const size_t len = local_outputs[0].data.length(); float* data = static_cast(local_outputs[0].data.data()); float* ref_data = refs[tid].data(); EXPECT_EQ((size_t)refs[tid].numel(), len / sizeof(float)); for (int i = 0; i < refs[tid].numel(); ++i) { EXPECT_NEAR(ref_data[i], data[i], ACC_DIFF); } }); } for (int i = 0; i < num_jobs; ++i) { threads[i].join(); } } TEST(inference_api_native, word2vec_cpu) { MainWord2Vec(false /*use_gpu*/); } TEST(inference_api_native, word2vec_cpu_threads) { MainThreadsWord2Vec(false /*use_gpu*/); } TEST(inference_api_native, image_classification_cpu) { MainImageClassification(false /*use_gpu*/); } TEST(inference_api_native, image_classification_cpu_threads) { MainThreadsImageClassification(false /*use_gpu*/); } #ifdef PADDLE_WITH_CUDA TEST(inference_api_native, word2vec_gpu) { MainWord2Vec(true /*use_gpu*/); } // Turn off temporarily for the unstable result. // TEST(inference_api_native, word2vec_gpu_threads) { // MainThreadsWord2Vec(true /*use_gpu*/); // } TEST(inference_api_native, image_classification_gpu) { MainImageClassification(true /*use_gpu*/); } // Turn off temporarily for the unstable result. // TEST(inference_api_native, image_classification_gpu_threads) { // MainThreadsImageClassification(true /*use_gpu*/); // } #endif TEST(PassBuilder, Delete) { contrib::AnalysisConfig config(false); config.pass_builder()->DeletePass("attention_lstm_fuse_pass"); const auto& passes = config.pass_builder()->AllPasses(); auto it = std::find(passes.begin(), passes.end(), "attention_lstm_fuse_pass"); ASSERT_EQ(it, passes.end()); } } // namespace paddle