/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include "paddle/fluid/framework/scope.h" #include // for unique_ptr #include #include #include #include "glog/logging.h" #include "paddle/fluid/framework/threadpool.h" #include "paddle/fluid/string/printf.h" DEFINE_bool(benchmark, false, "Doing memory benchmark. It will make deleting scope synchronized, " "and add some memory usage logs." "Default cuda is asynchronous device, set to True will" "force op run in synchronous mode."); DEFINE_bool( eager_delete_scope, true, "Delete local scope eagerly. It will reduce GPU memory usage but " "slow down the destruction of variables.(around 1% performance harm)"); DEFINE_double( eager_delete_tensor_gb, -1.0, "Memory size threshold (GB) when the garbage collector clear tensors." "Disabled when this value is less than 0"); // When in inference scenario, the scopes will not be written by two threads in // a mean time, but a scope may be read by multiple threads concurrently, and // the mutex will cause serious performance issue. // So the mutex is disabled when `ON_INFER`. #ifdef ON_INFER #define SCOPE_LOCK_GUARD #else #define SCOPE_LOCK_GUARD std::lock_guard lock(mutex_); #endif namespace paddle { namespace framework { int64_t GetEagerDeletionThreshold() { return FLAGS_eager_delete_tensor_gb < 0 ? -1 : static_cast(FLAGS_eager_delete_tensor_gb * (static_cast(1) << 30)); } Scope::~Scope() { DropKids(); } Scope& Scope::NewScope() const { SCOPE_LOCK_GUARD kids_.push_back(new Scope(this)); return *kids_.back(); } Variable* Scope::Var(const std::string& name) { SCOPE_LOCK_GUARD return VarInternal(name); } Variable* Scope::Var(std::string* name) { SCOPE_LOCK_GUARD auto new_name = string::Sprintf("%p.%d", this, vars_.size()); if (name != nullptr) { *name = new_name; } return VarInternal(new_name); } Variable* Scope::FindVar(const std::string& name) const { SCOPE_LOCK_GUARD return FindVarInternal(name); } Variable* Scope::FindLocalVar(const std::string& name) const { SCOPE_LOCK_GUARD return FindVarLocally(name); } const Scope* Scope::FindScope(const Variable* var) const { SCOPE_LOCK_GUARD return FindScopeInternal(var); } void Scope::DropKids() { SCOPE_LOCK_GUARD for (Scope* s : kids_) delete s; kids_.clear(); } bool Scope::HasKid(const Scope* scope) const { SCOPE_LOCK_GUARD auto it = std::find(this->kids_.begin(), this->kids_.end(), scope); return it != this->kids_.end(); } std::vector Scope::LocalVarNames() const { SCOPE_LOCK_GUARD std::vector known_vars; known_vars.reserve(this->vars_.size()); for (auto& p : vars_) { known_vars.emplace_back(p.first); } return known_vars; } void Scope::DeleteScope(Scope* scope) const { SCOPE_LOCK_GUARD auto it = std::find(this->kids_.begin(), this->kids_.end(), scope); PADDLE_ENFORCE(it != this->kids_.end(), "%p Cannot find %p as kid scope", this, scope); this->kids_.erase(it); // When making memory benchmark on Fluid, we have to delete scope sync. if (FLAGS_benchmark || FLAGS_eager_delete_scope) { delete scope; } else { Async([scope] { delete scope; }); } } void Scope::EraseVars(const std::vector& var_names) { SCOPE_LOCK_GUARD std::set var_set(var_names.begin(), var_names.end()); for (auto it = vars_.begin(); it != vars_.end();) { if (var_set.find(it->first) != var_set.end()) { it = vars_.erase(it); } else { ++it; } } } void Scope::Rename(const std::string& origin_name, const std::string& new_name) const { SCOPE_LOCK_GUARD RenameInternal(origin_name, new_name); } std::string Scope::Rename(const std::string& origin_name) const { SCOPE_LOCK_GUARD auto new_name = string::Sprintf("%p.%d", this, vars_.size()); RenameInternal(origin_name, new_name); return new_name; } Variable* Scope::VarInternal(const std::string& name) { auto* v = FindVarLocally(name); if (v != nullptr) return v; v = new Variable(); vars_[name].reset(v); VLOG(30) << "Create variable " << name; v->name_ = &(vars_.find(name)->first); return v; } const Scope* Scope::FindScopeInternal(const Variable* var) const { for (auto& kv : vars_) { if (kv.second.get() == var) { return this; } } return (parent_ == nullptr) ? nullptr : parent_->FindScope(var); } void Scope::RenameInternal(const std::string& origin_name, const std::string& new_name) const { auto origin_it = vars_.find(origin_name); PADDLE_ENFORCE(origin_it != vars_.end(), "Cannot find original variable with name %s", origin_name); auto new_it = vars_.find(new_name); PADDLE_ENFORCE(new_it == vars_.end(), "The variable with name %s is already in the scope", new_name); vars_[new_name].reset(origin_it->second.release()); vars_.erase(origin_it); } Variable* Scope::FindVarInternal(const std::string& name) const { auto var = FindVarLocally(name); if (var != nullptr) { return var; } return (parent_ == nullptr) ? nullptr : parent_->FindVar(name); } Variable* Scope::FindVarLocally(const std::string& name) const { auto it = vars_.find(name); if (it != vars_.end()) return it->second.get(); return nullptr; } std::string GenScopeTreeDebugInfo(Scope* root) { std::stringstream os; if (!root) return ""; // level traversal std::queue queue; queue.push(root); std::vector scopes; while (!queue.empty()) { auto* end = queue.back(); Scope* q = nullptr; while (q != end) { q = queue.front(); queue.pop(); os << q << " "; scopes.push_back(q); for (auto* c : q->kids()) { queue.push(c); } } // end of a level os << "\n------------------------------------------\n"; } os << "\nDetails:\n\n"; for (Scope* q : scopes) { os << "====\n"; os << q << ":\n"; for (auto& var : q->LocalVarNames()) { os << " - " << var << "\n"; } } return os.str(); } } // namespace framework } // namespace paddle