// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include #include #include #include #include "include/object_detector.h" DEFINE_string(model_dir, "", "Path of inference model"); DEFINE_string(image_path, "", "Path of input image"); DEFINE_string(video_path, "", "Path of input video"); DEFINE_bool(use_gpu, false, "Infering with GPU or CPU"); DEFINE_string(run_mode, "fluid", "mode of running(fluid/trt_fp32/trt_fp16)"); void PredictVideo(const std::string& video_path, PaddleDetection::ObjectDetector* det) { // Open video cv::VideoCapture capture; capture.open(video_path.c_str()); if (!capture.isOpened()) { printf("can not open video : %s\n", video_path.c_str()); return; } // Get Video info : resolution, fps int video_width = static_cast(capture.get(CV_CAP_PROP_FRAME_WIDTH)); int video_height = static_cast(capture.get(CV_CAP_PROP_FRAME_HEIGHT)); int video_fps = static_cast(capture.get(CV_CAP_PROP_FPS)); // Create VideoWriter for output cv::VideoWriter video_out; std::string video_out_path = "output.avi"; video_out.open(video_out_path.c_str(), CV_FOURCC('M', 'J', 'P', 'G'), video_fps, cv::Size(video_width, video_height), true); if (!video_out.isOpened()) { printf("create video writer failed!\n"); return; } std::vector result; auto labels = det->GetLabelList(); auto colormap = PaddleDetection::GenerateColorMap(labels.size()); // Capture all frames and do inference cv::Mat frame; while (capture.read(frame)) { if (frame.empty()) { break; } det->Predict(frame, &result); cv::Mat out_im = PaddleDetection::VisualizeResult( frame, result, labels, colormap); video_out.write(out_im); } capture.release(); video_out.release(); } void PredictImage(const std::string& image_path, PaddleDetection::ObjectDetector* det) { // Open input image as an opencv cv::Mat object cv::Mat im = cv::imread(image_path, 1); // Store all detected result std::vector result; det->Predict(im, &result); for (const auto& item : result) { printf("class=%d confidence=%.2f rect=[%d %d %d %d]\n", item.class_id, item.confidence, item.rect[0], item.rect[1], item.rect[2], item.rect[3]); } // Visualization result auto labels = det->GetLabelList(); auto colormap = PaddleDetection::GenerateColorMap(labels.size()); cv::Mat vis_img = PaddleDetection::VisualizeResult( im, result, labels, colormap); std::vector compression_params; compression_params.push_back(CV_IMWRITE_JPEG_QUALITY); compression_params.push_back(95); cv::imwrite("output.jpeg", vis_img, compression_params); printf("Visualized output saved as output.jpeg\n"); } int main(int argc, char** argv) { // Parsing command-line google::ParseCommandLineFlags(&argc, &argv, true); if (FLAGS_model_dir.empty() || (FLAGS_image_path.empty() && FLAGS_video_path.empty())) { std::cout << "Usage: ./main --model_dir=/PATH/TO/INFERENCE_MODEL/ " << "--image_path=/PATH/TO/INPUT/IMAGE/" << std::endl; return -1; } if (!(FLAGS_run_mode == "fluid" || FLAGS_run_mode == "trt_fp32" || FLAGS_run_mode == "trt_fp16")) { std::cout << "run_mode should be 'fluid', 'trt_fp32' or 'trt_fp16'."; return -1; } // Load model and create a object detector PaddleDetection::ObjectDetector det(FLAGS_model_dir, FLAGS_use_gpu, FLAGS_run_mode); // Do inference on input video or image if (!FLAGS_video_path.empty()) { PredictVideo(FLAGS_video_path, &det); } else if (!FLAGS_image_path.empty()) { PredictImage(FLAGS_image_path, &det); } return 0; }