import numpy import paddle.v2 as paddle from paddle.trainer.PyDataProvider2 import dense_vector, integer_value import mnist_util def train_reader(): train_file = './data/raw_data/train' generator = mnist_util.read_from_mnist(train_file) for item in generator: yield item def main(): paddle.init(use_gpu=False, trainer_count=1) # define network topology images = paddle.layer.data(name='pixel', size=784) label = paddle.layer.data(name='label', size=10) hidden1 = paddle.layer.fc(input=images, size=200) hidden2 = paddle.layer.fc(input=hidden1, size=200) inference = paddle.layer.fc(input=hidden2, size=10, act=paddle.activation.Softmax()) cost = paddle.layer.classification_cost(input=inference, label=label) topology = paddle.layer.parse_network(cost) parameters = paddle.parameters.create(topology) for param_name in parameters.keys(): array = parameters.get(param_name) array[:] = numpy.random.uniform(low=-1.0, high=1.0, size=array.shape) parameters.set(parameter_name=param_name, value=array) adam_optimizer = paddle.optimizer.Adam(learning_rate=0.01) def event_handler(event): if isinstance(event, paddle.event.EndIteration): para = parameters.get('___fc_2__.w0') print "Pass %d, Batch %d, Cost %f, Weight Mean Of Fc 2 is %f" % ( event.pass_id, event.batch_id, event.cost, para.mean()) else: pass trainer = paddle.trainer.SGD(update_equation=adam_optimizer) trainer.train(train_data_reader=train_reader, topology=topology, parameters=parameters, event_handler=event_handler, batch_size=32, # batch size should be refactor in Data reader data_types={ # data_types will be removed, It should be in # network topology 'pixel': dense_vector(784), 'label': integer_value(10) }) if __name__ == '__main__': main()