import paddle.v2.dataset.common import subprocess import numpy URL_PREFIX = 'http://yann.lecun.com/exdb/mnist/' TEST_IMAGE_URL = URL_PREFIX + 't10k-images-idx3-ubyte.gz' TEST_IMAGE_MD5 = '25e3cc63507ef6e98d5dc541e8672bb6' TEST_LABEL_URL = URL_PREFIX + 't10k-labels-idx1-ubyte.gz' TEST_LABEL_MD5 = '4e9511fe019b2189026bd0421ba7b688' TRAIN_IMAGE_URL = URL_PREFIX + 'train-images-idx3-ubyte.gz' TRAIN_IMAGE_MD5 = 'f68b3c2dcbeaaa9fbdd348bbdeb94873' TRAIN_LABEL_URL = URL_PREFIX + 'train-labels-idx1-ubyte.gz' TRAIN_LABEL_MD5 = 'd53e105ee54ea40749a09fcbcd1e9432' def reader_creator(image_filename, label_filename, buffer_size): def reader(): # According to http://stackoverflow.com/a/38061619/724872, we # cannot use standard package gzip here. m = subprocess.Popen(["zcat", image_filename], stdout=subprocess.PIPE) m.stdout.read(16) # skip some magic bytes l = subprocess.Popen(["zcat", label_filename], stdout=subprocess.PIPE) l.stdout.read(8) # skip some magic bytes while True: labels = numpy.fromfile( l.stdout, 'ubyte', count=buffer_size).astype("int") if labels.size != buffer_size: break # numpy.fromfile returns empty slice after EOF. images = numpy.fromfile( m.stdout, 'ubyte', count=buffer_size * 28 * 28).reshape( (buffer_size, 28 * 28)).astype('float32') images = images / 255.0 * 2.0 - 1.0 for i in xrange(buffer_size): yield images[i, :], labels[i] m.terminate() l.terminate() return reader() def train(): return reader_creator( paddle.v2.dataset.common.download(TRAIN_IMAGE_URL, 'mnist', TRAIN_IMAGE_MD5), paddle.v2.dataset.common.download(TRAIN_LABEL_URL, 'mnist', TRAIN_LABEL_MD5), 100) def test(): return reader_creator( paddle.v2.dataset.common.download(TEST_IMAGE_URL, 'mnist', TEST_IMAGE_MD5), paddle.v2.dataset.common.download(TEST_LABEL_URL, 'mnist', TEST_LABEL_MD5), 100)