# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import cv2 import time import paddle import numpy as np from .visualization import plot_tracking_dict __all__ = [ 'MOTTimer', 'Detection', 'write_mot_results', 'save_vis_results', 'load_det_results', 'preprocess_reid', 'get_crops', 'clip_box', 'scale_coords', ] class MOTTimer(object): """ This class used to compute and print the current FPS while evaling. """ def __init__(self): self.total_time = 0. self.calls = 0 self.start_time = 0. self.diff = 0. self.average_time = 0. self.duration = 0. def tic(self): # using time.time instead of time.clock because time time.clock # does not normalize for multithreading self.start_time = time.time() def toc(self, average=True): self.diff = time.time() - self.start_time self.total_time += self.diff self.calls += 1 self.average_time = self.total_time / self.calls if average: self.duration = self.average_time else: self.duration = self.diff return self.duration def clear(self): self.total_time = 0. self.calls = 0 self.start_time = 0. self.diff = 0. self.average_time = 0. self.duration = 0. class Detection(object): """ This class represents a bounding box detection in a single image. Args: tlwh (Tensor): Bounding box in format `(top left x, top left y, width, height)`. score (Tensor): Bounding box confidence score. feature (Tensor): A feature vector that describes the object contained in this image. cls_id (Tensor): Bounding box category id. """ def __init__(self, tlwh, score, feature, cls_id): self.tlwh = np.asarray(tlwh, dtype=np.float32) self.score = float(score) self.feature = np.asarray(feature, dtype=np.float32) self.cls_id = int(cls_id) def to_tlbr(self): """ Convert bounding box to format `(min x, min y, max x, max y)`, i.e., `(top left, bottom right)`. """ ret = self.tlwh.copy() ret[2:] += ret[:2] return ret def to_xyah(self): """ Convert bounding box to format `(center x, center y, aspect ratio, height)`, where the aspect ratio is `width / height`. """ ret = self.tlwh.copy() ret[:2] += ret[2:] / 2 ret[2] /= ret[3] return ret def write_mot_results(filename, results, data_type='mot', num_classes=1): # support single and multi classes if data_type in ['mot', 'mcmot']: save_format = '{frame},{id},{x1},{y1},{w},{h},{score},{cls_id},-1,-1\n' elif data_type == 'kitti': save_format = '{frame} {id} car 0 0 -10 {x1} {y1} {x2} {y2} -10 -10 -10 -1000 -1000 -1000 -10\n' else: raise ValueError(data_type) f = open(filename, 'w') for cls_id in range(num_classes): for frame_id, tlwhs, tscores, track_ids in results[cls_id]: if data_type == 'kitti': frame_id -= 1 for tlwh, score, track_id in zip(tlwhs, tscores, track_ids): if track_id < 0: continue if data_type == 'mot': cls_id = -1 x1, y1, w, h = tlwh x2, y2 = x1 + w, y1 + h line = save_format.format( frame=frame_id, id=track_id, x1=x1, y1=y1, x2=x2, y2=y2, w=w, h=h, score=score, cls_id=cls_id) f.write(line) print('MOT results save in {}'.format(filename)) def save_vis_results(data, frame_id, online_ids, online_tlwhs, online_scores, average_time, show_image, save_dir, num_classes=1): if show_image or save_dir is not None: assert 'ori_image' in data img0 = data['ori_image'].numpy()[0] online_im = plot_tracking_dict( img0, num_classes, online_tlwhs, online_ids, online_scores, frame_id=frame_id, fps=1. / average_time) if show_image: cv2.imshow('online_im', online_im) if save_dir is not None: cv2.imwrite( os.path.join(save_dir, '{:05d}.jpg'.format(frame_id)), online_im) def load_det_results(det_file, num_frames): assert os.path.exists(det_file) and os.path.isfile(det_file), \ '{} is not exist or not a file.'.format(det_file) labels = np.loadtxt(det_file, dtype='float32', delimiter=',') assert labels.shape[1] == 7, \ "Each line of {} should have 7 items: '[frame_id],[x0],[y0],[w],[h],[score],[class_id]'.".format(det_file) results_list = [] for frame_i in range(num_frames): results = {'bbox': [], 'score': [], 'cls_id': []} lables_with_frame = labels[labels[:, 0] == frame_i + 1] # each line of lables_with_frame: # [frame_id],[x0],[y0],[w],[h],[score],[class_id] for l in lables_with_frame: results['bbox'].append(l[1:5]) results['score'].append(l[5]) results['cls_id'].append(l[6]) results_list.append(results) return results_list def scale_coords(coords, input_shape, im_shape, scale_factor): im_shape = im_shape.numpy()[0] ratio = scale_factor[0][0] pad_w = (input_shape[1] - int(im_shape[1])) / 2 pad_h = (input_shape[0] - int(im_shape[0])) / 2 coords = paddle.cast(coords, 'float32') coords[:, 0::2] -= pad_w coords[:, 1::2] -= pad_h coords[:, 0:4] /= ratio coords[:, :4] = paddle.clip(coords[:, :4], min=0, max=coords[:, :4].max()) return coords.round() def clip_box(xyxy, input_shape, im_shape, scale_factor): im_shape = im_shape.numpy()[0] ratio = scale_factor.numpy()[0][0] img0_shape = [int(im_shape[0] / ratio), int(im_shape[1] / ratio)] xyxy[:, 0::2] = paddle.clip(xyxy[:, 0::2], min=0, max=img0_shape[1]) xyxy[:, 1::2] = paddle.clip(xyxy[:, 1::2], min=0, max=img0_shape[0]) w = xyxy[:, 2:3] - xyxy[:, 0:1] h = xyxy[:, 3:4] - xyxy[:, 1:2] mask = paddle.logical_and(h > 0, w > 0) keep_idx = paddle.nonzero(mask) xyxy = paddle.gather_nd(xyxy, keep_idx[:, :1]) return xyxy, keep_idx def get_crops(xyxy, ori_img, w, h): crops = [] xyxy = xyxy.numpy().astype(np.int64) ori_img = ori_img.numpy() ori_img = np.squeeze(ori_img, axis=0).transpose(1, 0, 2) for i, bbox in enumerate(xyxy): crop = ori_img[bbox[0]:bbox[2], bbox[1]:bbox[3], :] crops.append(crop) crops = preprocess_reid(crops, w, h) return crops def preprocess_reid(imgs, w=64, h=192, mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]): im_batch = [] for img in imgs: img = cv2.resize(img, (w, h)) img = img[:, :, ::-1].astype('float32').transpose((2, 0, 1)) / 255 img_mean = np.array(mean).reshape((3, 1, 1)) img_std = np.array(std).reshape((3, 1, 1)) img -= img_mean img /= img_std img = np.expand_dims(img, axis=0) im_batch.append(img) im_batch = np.concatenate(im_batch, 0) return im_batch