// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/fluid/imperative/layer.h" #include #include #include #include #include #include #include "paddle/fluid/framework/lod_tensor.h" #include "paddle/fluid/framework/op_registry.h" #include "paddle/fluid/framework/operator.h" #include "paddle/fluid/framework/tensor_util.h" #include "paddle/fluid/operators/math/blas.h" #include "paddle/fluid/platform/device_context.h" #include "paddle/fluid/string/printf.h" namespace paddle { namespace imperative { const char* PyLayer::kFwdInp = "X"; const char* PyLayer::kFwdOut = "Out"; std::map py_funcs_; using framework::Variable; namespace detail { template class TensorAddToFunctor : public boost::static_visitor<> { public: TensorAddToFunctor(int64_t numel, const T* x, T* y) : numel_(numel), x_(x), y_(y) {} void operator()(const platform::CPUPlace& place) { platform::CPUDeviceContext* ctx = dynamic_cast( platform::DeviceContextPool::Instance().Get(place)); auto blas = operators::math::GetBlas(*ctx); blas.AXPY(numel_, 1., x_, y_); } #ifdef PADDLE_WITH_CUDA void operator()(const platform::CUDAPlace& place) { platform::CUDADeviceContext* ctx = dynamic_cast( platform::DeviceContextPool::Instance().Get(place)); auto blas = operators::math::GetBlas(*ctx); blas.AXPY(numel_, 1., x_, y_); } #else void operator()(const platform::CUDAPlace& place) { PADDLE_THROW("Do NOT support gradient merge in place %s", place); } #endif // there is NO blas in CUDAPinnedPlace void operator()(const platform::CUDAPinnedPlace& place) { PADDLE_THROW("Do NOT support gradient merge in place %s", place); } private: int64_t numel_; const T* x_; T* y_; }; } // namespace detail void AddTo(Variable* src, Variable* dst, platform::Place place) { framework::Tensor* dst_tensor = dst->GetMutable(); framework::Tensor* src_tensor = src->GetMutable(); // FIXME(minqiyang): loss_grad op will pass a zero grad of label // ugly fix for it if (src_tensor->numel() == 0) { return; } PADDLE_ENFORCE(dst_tensor->numel() == src_tensor->numel(), "dst_numel %lld vs. src_numel %lld", dst_tensor->numel(), src_tensor->numel()); detail::TensorAddToFunctor func( src_tensor->numel(), src_tensor->data(), dst_tensor->mutable_data(place)); boost::apply_visitor(func, place); } void AddGradBySort(BackwardSumMap* bck_map, VarBase* target) { PADDLE_ENFORCE(bck_map->find(target) != bck_map->end(), "Can't find %s in backward grad map", target->Name()); std::pair>>& current = bck_map->at(target); std::sort( current.second.begin(), current.second.end(), [](const std::pair& a, const std::pair& b) { return a.first > b.first; }); for (auto& var_pair : current.second) { Variable* origin_grad = target->var_.get(); Variable* grad_to_add = var_pair.second->var_.get(); VLOG(2) << "add origin_grad: " << target->Name(); VLOG(2) << "added grad: " << var_pair.second->Name() << " trace id is: " << var_pair.first; AddTo(grad_to_add, origin_grad, current.first); delete var_pair.second; var_pair.second = nullptr; } } class Autograd { public: Autograd() {} void RunBackward(VarBase* var, const detail::BackwardStrategy& bck_stratedy) { if (var->IsStopGradient()) { return; } VLOG(3) << "start autograd"; BackwardSumMap bck_map; GradientRef grad_ref; std::deque ready; ready.push_back(var->PreOp()); std::map dep_counts = ComputeDepCounts(var->PreOp(), bck_stratedy, &grad_ref); while (!ready.empty()) { OpBase* ready_op = ready.front(); ready.pop_front(); std::map> input_grads = ready_op->ApplyGrad(&bck_map, &grad_ref, bck_stratedy); for (auto it = input_grads.rbegin(); it != input_grads.rend(); ++it) { const std::vector& ingrads = it->second; for (size_t i = 0; i < ingrads.size(); ++i) { if (!ingrads[i]) continue; if (ready_op->input_vars_[it->first][i]->IsStopGradient()) { continue; } OpBase* pre_op = ready_op->pre_ops_[it->first][i]; if (!pre_op) continue; dep_counts[pre_op] -= 1; PADDLE_ENFORCE(dep_counts[pre_op] >= 0); bool pre_op_ready = dep_counts[pre_op] == 0; if (pre_op_ready) { ready.push_back(pre_op); } } } ready_op->InvokeBackwardHooks(); } } private: std::map ComputeDepCounts( OpBase* op, const detail::BackwardStrategy& bck_stratedy, GradientRef* grad_ref) { if (bck_stratedy.sorted_sum_gradient_) { PADDLE_ENFORCE_NOT_NULL(grad_ref, "grad_ref should not be null when " "using sorted grad backward strategy"); } std::map ret; std::deque queue; queue.push_back(op); std::unordered_set visited; visited.insert(op); while (!queue.empty()) { OpBase* candidate = queue.front(); queue.pop_front(); if (bck_stratedy.sorted_sum_gradient_) { for (const auto& map : candidate->grad_output_vars_) { for (const auto& it : map) { for (const auto& vb : it.second) { ++(*grad_ref)[vb]; } } } } for (auto it : candidate->pre_ops_) { for (OpBase* pre_op : it.second) { if (!pre_op) continue; VLOG(2) << "op dep " << candidate->Type() << " trace id " << candidate->trace_id_ << " <---- " << it.first << " <---- " << pre_op->Type() << " trace id " << pre_op->trace_id_; if (visited.find(pre_op) == visited.end()) { visited.insert(pre_op); queue.push_back(pre_op); } ret[pre_op] += 1; } } } return ret; } }; std::unique_ptr VarBase::NewVarBase(const platform::Place& dst_place, const bool blocking) const { PADDLE_ENFORCE(var_->IsInitialized(), "Variable must be initialized when getting numpy tensor"); // TODO(minqiyang): change this after move unique_name generator to CXX const framework::LoDTensor& self_tensor = var_->Get(); std::unique_ptr new_var(new VarBase( "Itmp", self_tensor.type(), self_tensor.dims(), dst_place, true, false)); framework::LoDTensor* tensor = new_var->var_->GetMutable(); tensor->set_lod(var_->Get().lod()); const auto& src_tensor = var_->Get(); framework::TensorCopy(src_tensor, dst_place, tensor); if (blocking) { platform::DeviceContextPool::Instance().Get(dst_place)->Wait(); auto src_place = src_tensor.place(); if (!(src_place == dst_place)) { platform::DeviceContextPool::Instance().Get(src_place)->Wait(); } } if (platform::is_gpu_place(dst_place)) { VLOG(3) << "copy tensor " << Name() << " from gpu"; } return new_var; } framework::LoDTensor& VarBase::GradValue() { VLOG(3) << "get var grad " << Name(); PADDLE_ENFORCE_NOT_NULL(grads_, "Could not get grad value from no grad variable"); return *(grads_->var_->GetMutable()); } std::map> OpBase::ApplyGrad( BackwardSumMap* bck_map, GradientRef* grad_ref, const detail::BackwardStrategy& bck_stratedy) { PADDLE_ENFORCE(!grad_op_descs_.empty() || backward_id_ > 0, "%s has no backward implementation", Type()); VLOG(3) << "apply op grad: " << Type(); std::vector tmp_grad_outputs; if (backward_id_ > 0) { VLOG(3) << "py_layer_grad"; tmp_grad_outputs.resize(1); tmp_grad_outputs[0][framework::GradVarName(PyLayer::kFwdOut)] = PyLayer::ApplyGrad( backward_id_, grad_input_vars_[0][framework::GradVarName(PyLayer::kFwdInp)]); } else { const size_t grad_op_count = grad_op_descs_.size(); tmp_grad_outputs.resize(grad_op_count); for (size_t k = 0; k < grad_op_count; ++k) { framework::OpDesc* grad_op_desc = grad_op_descs_[k]; auto& grad_output_variable_map = grad_output_vars_[k]; VLOG(3) << "apply grad op " << grad_op_desc->Type(); // Allocate tmp grad output variable for (const auto& it : grad_output_variable_map) { auto& outputs = tmp_grad_outputs[k][it.first]; outputs.reserve(it.second.size()); for (size_t i = 0; i < it.second.size(); ++i) { VarBase* origin_grad_var_base = it.second[i]; // Allocate a new variable VarBase* tmp_grad_var_base = new VarBase( string::Sprintf("%s@IGrad", origin_grad_var_base->Name()), origin_grad_var_base->DataType(), origin_grad_var_base->Dims(), place_, true, false); outputs.emplace_back(tmp_grad_var_base); } } // No need to do compile time infer shape here. // grad_op_desc_->InferShape(*block_); // grad_op_desc->InferVarType(block_); std::unique_ptr opbase = framework::OpRegistry::CreateOp(*grad_op_desc); auto& info = framework::OpInfoMap::Instance().Get(grad_op_desc->Type()); if (info.infer_var_type_) { RuntimeInferVarTypeContext infer_var_type_ctx( &grad_input_vars_[k], &tmp_grad_outputs[k], &attrs_); info.infer_var_type_(&infer_var_type_ctx); } framework::OperatorWithKernel* op_kernel = dynamic_cast(opbase.get()); PADDLE_ENFORCE_NOT_NULL(op_kernel, "only support op with kernel"); // Run grad op framework::VariableValueMap grad_invars_map; framework::VariableValueMap grad_outvars_map; for (const auto& it : grad_input_vars_[k]) { auto& grad_invars = grad_invars_map[it.first]; grad_invars.reserve(it.second.size()); for (const VarBase* grad_inp : it.second) { PADDLE_ENFORCE_NOT_NULL(grad_inp->var_, "op %s input %s nullptr", grad_op_desc->Type(), grad_inp->Name()); grad_invars.emplace_back(grad_inp->var_.get()); } } for (const auto& it : tmp_grad_outputs[k]) { auto& grad_outvars = grad_outvars_map[it.first]; grad_outvars.reserve(it.second.size()); for (VarBase* grad_out : it.second) { PADDLE_ENFORCE_NOT_NULL(grad_out->var_, "op %s output %s nullptr", grad_op_desc->Type(), grad_out->Name()); grad_outvars.emplace_back(grad_out->var_.get()); } } framework::RuntimeContext ctx(grad_invars_map, grad_outvars_map); framework::Scope scope; PreparedOp p = PreparedOp::Prepare(ctx, *op_kernel, place_); p.op.RuntimeInferShape(scope, place_, ctx); p.func( framework::ExecutionContext(p.op, scope, *p.dev_ctx, p.ctx, nullptr)); } } // Add tmp grad outputs to original grad vars for (size_t k = 0; k < grad_output_vars_.size(); ++k) { for (const auto& it : grad_output_vars_[k]) { auto& outputs = tmp_grad_outputs[k][it.first]; const auto& origin_outputs = it.second; PADDLE_ENFORCE_EQ(outputs.size(), origin_outputs.size()); for (size_t i = 0; i < outputs.size(); ++i) { // track outputs used by sum if (bck_stratedy.sorted_sum_gradient_) { #ifndef PADDLE_WITH_CUDA VLOG(2) << "origin_outputs is : " << origin_outputs[i]->Name() << " "; VLOG(2) << origin_outputs[i] ->var_->GetMutable() ->data()[0]; VLOG(2) << "outputs is : " << outputs[i]->Name() << " "; VLOG(2) << outputs[i] ->var_->GetMutable() ->data()[0]; #endif if (bck_map->find(origin_outputs[i]) != bck_map->end()) { VLOG(2) << "add sub grad to " << origin_outputs[i]->Name(); bck_map->at(origin_outputs[i]) .second.emplace_back( std::pair(this->trace_id_, outputs[i])); } else { VLOG(2) << "insert new map for " << origin_outputs[i]->Name(); std::pair>> tmp(place_, {std::make_pair(this->trace_id_, outputs[i])}); bck_map->insert(std::make_pair(origin_outputs[i], tmp)); } PADDLE_ENFORCE(grad_ref->find(origin_outputs[i]) != grad_ref->end(), "Can't find %s in grad_reference count map", origin_outputs[i]->Name()); PADDLE_ENFORCE(grad_ref->at(origin_outputs[i]) >= 1, "Backward error when calculate grad reference"); if (grad_ref->at(origin_outputs[i]) > 1) { VLOG(2) << "remove ref for " << origin_outputs[i]->Name(); grad_ref->at(origin_outputs[i])--; } else { VLOG(2) << "Add grad for: " << origin_outputs[i]->Name(); AddGradBySort(bck_map, origin_outputs[i]); grad_ref->at(origin_outputs[i])--; } } else { framework::Variable* grad = outputs[i]->var_.get(); framework::Variable* orig_grad = origin_outputs[i]->var_.get(); VLOG(2) << "AddTo Called with orig_grad is: " << origin_outputs[i]->name_ << " Grad to be added is " << outputs[i]->name_; AddTo(grad, orig_grad, place_); delete outputs[i]; } } } } return input_vars_; } void OpBase::InvokeBackwardHooks() { VLOG(3) << "call backward hooks, hooks num: " << backward_hooks_.size(); // call backward hooks for (py::object& callable : backward_hooks_) { callable(this); } } void OpBase::RegisterBackwardHooks(const py::object& callable, bool front) { VLOG(3) << "Register backward hooks " << trace_id_; // TODO(minqiyang): check the callable format if (front) { backward_hooks_.insert(backward_hooks_.begin(), callable); } else { backward_hooks_.push_back(callable); } } void VarBase::RunBackward(const detail::BackwardStrategy& bck_stratedy) { if (!pre_op_) return; VLOG(3) << "start backward"; auto grads_t = grads_->var_->GetMutable(); operators::math::set_constant( *(platform::DeviceContextPool::Instance().Get( var_->GetMutable()->place())), grads_t, 1.0); PADDLE_ENFORCE( grads_ == pre_op_->output_vars_[pre_op_out_name_][pre_op_out_idx_]->grads_); Autograd().RunBackward(this, bck_stratedy); } void PyLayer::RegisterFunc(int func_id, const py::object& py_func) { py_funcs_[func_id] = py_func; } int PyLayer::NumFuncs() { return py_funcs_.size(); } std::vector> PyLayer::Apply( int func_id, const std::vector& inputs) { PADDLE_ENFORCE(py_funcs_.find(func_id) != py_funcs_.end()); return CallPythonFunc(py_funcs_[func_id], inputs); } std::vector PyLayer::ApplyGrad(int func_id, const std::vector& inputs) { PADDLE_ENFORCE(py_funcs_.find(func_id) != py_funcs_.end()); auto rets = CallPythonFunc(py_funcs_[func_id], inputs); std::vector outs; outs.reserve(rets.size()); for (size_t i = 0U; i != rets.size(); ++i) { outs.emplace_back(new VarBase( string::Sprintf("%s_out_%d", framework::GradVarName(PyLayer::kFwdOut), i), std::move(rets[i]), nullptr, true)); } return outs; } std::vector> PyLayer::CallPythonFunc( const py::object& callable, const std::vector& ins) { py::gil_scoped_acquire guard; py::tuple in_args(ins.size()); for (size_t i = 0; i < ins.size(); ++i) { const framework::LoDTensor& t = ins[i]->var_->Get(); in_args[i] = t.IsInitialized() ? py::cast(t) : py::cast(nullptr); } VLOG(3) << "pyfunc in " << py::len(in_args); // TODO(panyx0718): Who owns the returned LoDTensor. auto ret = callable(in_args); auto ret_tuple = py::cast(ret); size_t ret_num = py::len(ret_tuple); std::vector> outs; outs.reserve(ret_num); VLOG(3) << "pyfunc out " << ret_num; for (size_t i = 0; i < ret_num; ++i) { try { auto* py_out_tensor = py::cast(ret_tuple[i]); PADDLE_ENFORCE_NOT_NULL(py_out_tensor, "Output tensor %d should not be nullptr", i); auto var = std::unique_ptr(new framework::Variable()); auto* tensor = var->GetMutable(); tensor->ShareDataWith(*py_out_tensor); tensor->set_lod(py_out_tensor->lod()); outs.emplace_back(std::move(var)); } catch (py::cast_error&) { PADDLE_THROW("The %d-th output must be LoDTensor", i); } } return outs; } } // namespace imperative } // namespace paddle