# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import os, sys # add python path of PadleDetection to sys.path parent_path = os.path.abspath(os.path.join(__file__, *(['..'] * 2))) if parent_path not in sys.path: sys.path.append(parent_path) import yaml import paddle from paddle import fluid import logging FORMAT = '%(asctime)s-%(levelname)s: %(message)s' logging.basicConfig(level=logging.INFO, format=FORMAT) logger = logging.getLogger(__name__) try: from ppdet.core.workspace import load_config, merge_config, create from ppdet.utils.cli import ArgsParser from ppdet.utils.check import check_config, check_version, enable_static_mode import ppdet.utils.checkpoint as checkpoint from ppdet.utils.export_utils import dump_infer_config, prune_feed_vars except ImportError as e: if sys.argv[0].find('static') >= 0: logger.error("Importing ppdet failed when running static model " "with error: {}\n" "please try:\n" "\t1. run static model under PaddleDetection/static " "directory\n" "\t2. run 'pip uninstall ppdet' to uninstall ppdet " "dynamic version firstly.".format(e)) sys.exit(-1) else: raise e def save_serving_model(FLAGS, exe, feed_vars, test_fetches, infer_prog): cfg_name = os.path.basename(FLAGS.config).split('.')[0] save_dir = os.path.join(FLAGS.output_dir, cfg_name) feed_var_names = [var.name for var in feed_vars.values()] fetch_list = sorted(test_fetches.items(), key=lambda i: i[0]) target_vars = [var[1] for var in fetch_list] feed_var_names = prune_feed_vars(feed_var_names, target_vars, infer_prog) serving_client = os.path.join(FLAGS.output_dir, 'serving_client') serving_server = os.path.join(FLAGS.output_dir, 'serving_server') logger.info( "Export serving model to {}, client side: {}, server side: {}. input: {}, output: " "{}...".format(FLAGS.output_dir, serving_client, serving_server, feed_var_names, [str(var.name) for var in target_vars])) feed_dict = {x: infer_prog.global_block().var(x) for x in feed_var_names} fetch_dict = {x.name: x for x in target_vars} import paddle_serving_client.io as serving_io serving_client = os.path.join(save_dir, 'serving_client') serving_server = os.path.join(save_dir, 'serving_server') serving_io.save_model( client_config_folder=serving_client, server_model_folder=serving_server, feed_var_dict=feed_dict, fetch_var_dict=fetch_dict, main_program=infer_prog) def main(): cfg = load_config(FLAGS.config) merge_config(FLAGS.opt) check_config(cfg) check_version() main_arch = cfg.architecture # Use CPU for exporting inference model instead of GPU place = fluid.CPUPlace() exe = fluid.Executor(place) model = create(main_arch) startup_prog = fluid.Program() infer_prog = fluid.Program() with fluid.program_guard(infer_prog, startup_prog): with fluid.unique_name.guard(): inputs_def = cfg['TestReader']['inputs_def'] inputs_def['use_dataloader'] = False feed_vars, _ = model.build_inputs(**inputs_def) test_fetches = model.test(feed_vars) infer_prog = infer_prog.clone(True) exe.run(startup_prog) checkpoint.load_params(exe, infer_prog, cfg.weights) save_serving_model(FLAGS, exe, feed_vars, test_fetches, infer_prog) dump_infer_config(FLAGS, cfg) if __name__ == '__main__': enable_static_mode() parser = ArgsParser() parser.add_argument( "--output_dir", type=str, default="output", help="Directory for storing the output model files.") FLAGS = parser.parse_args() main()