/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include #include #include #include "paddle/fluid/inference/tests/api/tester_helper.h" namespace paddle { namespace inference { namespace analysis { // diff: similarity_norm.tmp_0, for speed: fc_4.tmp_1 static const char out_var_name[] = "reduce_sum_0.tmp_0"; // for diff: 154, for speed 111 constexpr int num_slots = 154; struct OneSlotInBatch { std::string name; std::vector> data; std::vector shape; std::vector lod; }; struct DataRecord { std::vector> batched_data; std::map>> datasets; size_t batch_iter{0}, num_samples; // total number of samples DataRecord() = default; explicit DataRecord(const std::string &path, int batch_size = 1) { Load(path); Prepare(batch_size); } void Load(const std::string &path) { std::ifstream file(path); std::string line; int num_lines = 0; while (std::getline(file, line)) { num_lines++; std::vector data; split(line, '\t', &data); std::vector slot_data; split_to_float(data[1], ' ', &slot_data); std::string name = data[0]; PADDLE_ENFORCE_EQ(slot_data.size() % 11, 0UL, "line %d, %s should be divisible", num_lines, name); datasets[name].emplace_back(std::move(slot_data)); } num_samples = num_lines / num_slots; PADDLE_ENFORCE_EQ(num_samples * num_slots, static_cast(num_lines), "num samples should be divisible"); PADDLE_ENFORCE_GT(num_samples, 0UL); } void Prepare(int bs) { for (auto it = datasets.begin(); it != datasets.end(); ++it) { PADDLE_ENFORCE_EQ(it->second.size(), num_samples, "size of each slot should be equal"); } size_t num_batches = num_samples / bs; EXPECT_GT(num_batches, 0); batched_data.resize(num_batches); for (auto &one_batch : batched_data) { one_batch.resize(datasets.size()); size_t i = 0; for (auto it = datasets.begin(); it != datasets.end(); ++it) { auto &slot = one_batch[i]; slot.name = it->first; slot.data.resize(bs); slot.lod.resize(bs + 1); slot.lod[0] = 0; auto &lod = slot.lod; auto &datas = it->second; for (int k = 0; k < bs; ++k) { size_t id = k + batch_iter * bs; std::copy(datas[id].begin(), datas[id].end(), std::back_inserter(slot.data[k])); size_t len = datas[id].size() / 11; PADDLE_ENFORCE_EQ(len * 11, datas[id].size(), "%s %d size should be divisible", slot.name, id); lod[k + 1] = lod[k] + len; } slot.shape.assign({static_cast(lod[bs]), 11}); i++; } } } const std::vector &NextBatch() { if (batch_iter >= batched_data.size() - 1) { batch_iter = -1; } return batched_data[++batch_iter]; } }; static void TensorAssignSlot(PaddleTensor *tensor, const OneSlotInBatch &slot) { tensor->name = slot.name + "_embed"; tensor->shape = slot.shape; tensor->dtype = PaddleDType::FLOAT32; tensor->lod.clear(); tensor->lod.emplace_back(slot.lod); TensorAssignData(tensor, slot.data); } void PrepareInputs(std::vector *input_slots, DataRecord *data) { const auto &one_batch = data->NextBatch(); input_slots->resize(one_batch.size()); for (size_t i = 0; i < one_batch.size(); ++i) { auto &slot = one_batch[i]; TensorAssignSlot(&((*input_slots)[i]), slot); } } void SetInput(std::vector> *inputs) { DataRecord data(FLAGS_infer_data, FLAGS_batch_size); std::vector input_slots; int epoch = FLAGS_test_all_data ? data.batched_data.size() : 1; LOG(INFO) << "number of samples: " << data.batched_data.size() * FLAGS_batch_size; for (int bid = 0; bid < epoch; ++bid) { PrepareInputs(&input_slots, &data); (*inputs).emplace_back(input_slots); } } void SetConfig(AnalysisConfig *cfg, bool use_mkldnn = false) { cfg->SetModel(FLAGS_infer_model + "/model", FLAGS_infer_model + "/params"); cfg->DisableGpu(); cfg->SwitchSpecifyInputNames(); cfg->SwitchIrDebug(); cfg->SetCpuMathLibraryNumThreads(FLAGS_paddle_num_threads); if (FLAGS_zero_copy) { cfg->SwitchUseFeedFetchOps(false); } if (use_mkldnn) { cfg->EnableMKLDNN(); } // Enable seqpool_concat_fuse_pass, disabled by default since it takes much // time cfg->pass_builder()->InsertPass(2, "seqpool_concat_fuse_pass"); } void profile(bool use_mkldnn = false) { AnalysisConfig cfg; SetConfig(&cfg, use_mkldnn); std::vector> outputs; std::vector> input_slots_all; SetInput(&input_slots_all); TestPrediction(reinterpret_cast(&cfg), input_slots_all, &outputs, FLAGS_num_threads); } TEST(Analyzer_seq_pool1, profile) { profile(); } // Compare result of NativeConfig and AnalysisConfig TEST(Analyzer_seq_pool1, compare) { AnalysisConfig cfg; SetConfig(&cfg); std::vector> input_slots_all; SetInput(&input_slots_all); CompareNativeAndAnalysis( reinterpret_cast(&cfg), input_slots_all); } // Compare Deterministic result TEST(Analyzer_seq_pool1, compare_determine) { AnalysisConfig cfg; SetConfig(&cfg); std::vector> input_slots_all; SetInput(&input_slots_all); CompareDeterministic(reinterpret_cast(&cfg), input_slots_all); } // Check the fuse status TEST(Analyzer_seq_pool1, fuse_statis) { AnalysisConfig cfg; SetConfig(&cfg); int num_ops; auto predictor = CreatePaddlePredictor(cfg); auto fuse_statis = GetFuseStatis(predictor.get(), &num_ops); ASSERT_TRUE(fuse_statis.count("fc_fuse")); ASSERT_TRUE(fuse_statis.count("seqpool_concat_fuse")); ASSERT_TRUE(fuse_statis.count("squared_mat_sub_fuse")); ASSERT_TRUE(fuse_statis.count("repeated_fc_relu_fuse")); ASSERT_EQ(fuse_statis.at("fc_fuse"), 10); EXPECT_EQ(fuse_statis.at("seqpool_concat_fuse"), 2); EXPECT_EQ(fuse_statis.at("squared_mat_sub_fuse"), 2); EXPECT_EQ(fuse_statis.at("repeated_fc_relu_fuse"), 2); LOG(INFO) << "num_ops: " << num_ops; EXPECT_EQ(num_ops, 171); } // Compare result of AnalysisConfig and AnalysisConfig + ZeroCopy TEST(Analyzer_seq_pool1, compare_zero_copy) { AnalysisConfig cfg; SetConfig(&cfg); std::vector> input_slots_all; SetInput(&input_slots_all); std::vector outputs_name; outputs_name.emplace_back(out_var_name); CompareAnalysisAndZeroCopy(reinterpret_cast(&cfg), input_slots_all, outputs_name); } } // namespace analysis } // namespace inference } // namespace paddle