# 压缩模型库 ## 测试环境 - Python 2.7.1 - PaddlePaddle >=1.6 - CUDA 9.0 - cuDNN >=7.4 - NCCL 2.1.2 ## 剪裁模型库 ### 训练策略 - 剪裁模型训练时使用[PaddleDetection模型库](../docs/MODEL_ZOO_cn.md)发布的模型权重作为预训练权重。 - 剪裁训练使用模型默认配置,即除`pretrained_weights`外配置不变。 - 剪裁模型全部为基于敏感度的卷积通道剪裁。 - YOLOv3模型主要剪裁`yolo_head`部分,即剪裁参数如下。 ``` --pruned_params="yolo_block.0.0.0.conv.weights,yolo_block.0.0.1.conv.weights,yolo_block.0.1.0.conv.weights,yolo_block.0.1.1.conv.weights,yolo_block.0.2.conv.weights,yolo_block.0.tip.conv.weights,yolo_block.1.0.0.conv.weights,yolo_block.1.0.1.conv.weights,yolo_block.1.1.0.conv.weights,yolo_block.1.1.1.conv.weights,yolo_block.1.2.conv.weights,yolo_block.1.tip.conv.weights,yolo_block.2.0.0.conv.weights,yolo_block.2.0.1.conv.weights,yolo_block.2.1.0.conv.weights,yolo_block.2.1.1.conv.weights,yolo_block.2.2.conv.weights,yolo_block.2.tip.conv.weights" ``` - YOLOv3模型剪裁中剪裁策略`r578`表示`yolo_head`中三个输出分支一次使用`0.5, 0.7, 0.8`的剪裁率剪裁,即剪裁率如下。 ``` --pruned_ratios="0.5,0.5,0.5,0.5,0.5,0.5,0.7,0.7,0.7,0.7,0.7,0.7,0.8,0.8,0.8,0.8,0.8,0.8" ``` - YOLOv3模型剪裁中剪裁策略`sensity`表示`yolo_head`中各参数剪裁率如下,该剪裁率为使用`yolov3_mobilnet_v1`模型在COCO数据集上敏感度实验分析得出。 ``` --pruned_ratios="0.1,0.2,0.2,0.2,0.2,0.1,0.2,0.3,0.3,0.3,0.2,0.1,0.3,0.4,0.4,0.4,0.4,0.3" ``` ### YOLOv3 on COCO | 骨架网络 | 剪裁策略 | 输入尺寸 | Box AP | 下载 | | :----------------| :-------: | :------: | :-----: | :-----------------------------------------------------: | | ResNet50-vd-dcn | sensity | 608 | 39.8 | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/prune/yolov3_r50_dcn_prune1x.tar) | | ResNet50-vd-dcn | r578 | 608 | 38.3 | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/prune/yolov3_r50_dcn_prune578.tar) | | MobileNetV1 | sensity | 608 | 30.2 | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/prune/yolov3_mobilenet_v1_prune1x.tar) | | MobileNetV1 | sensity | 416 | 29.7 | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/prune/yolov3_mobilenet_v1_prune1x.tar) | | MobileNetV1 | sensity | 320 | 27.2 | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/prune/yolov3_mobilenet_v1_prune1x.tar) | | MobileNetV1 | r578 | 608 | 27.8 | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/prune/yolov3_mobilenet_v1_prune578.tar) | | MobileNetV1 | r578 | 416 | 26.8 | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/prune/yolov3_mobilenet_v1_prune578.tar) | | MobileNetV1 | r578 | 320 | 24.0 | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/prune/yolov3_mobilenet_v1_prune578.tar) | ### YOLOv3 on Pascal VOC | 骨架网络 | 剪裁策略 | 输入尺寸 | Box AP | 下载 | | :----------------| :-------: | :------: | :-----: | :-----------------------------------------------------: | | MobileNetV1 | sensity | 608 | 78.4 | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/prune/yolov3_mobilenet_v1_voc_prune1x.tar) | | MobileNetV1 | sensity | 416 | 78.7 | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/prune/yolov3_mobilenet_v1_voc_prune1x.tar) | | MobileNetV1 | sensity | 320 | 76.1 | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/prune/yolov3_mobilenet_v1_voc_prune1x.tar) | | MobileNetV1 | r578 | 608 | 77.6 | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/prune/yolov3_mobilenet_v1_voc_prune578.tar) | | MobileNetV1 | r578 | 416 | 77.7 | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/prune/yolov3_mobilenet_v1_voc_prune578.tar) | | MobileNetV1 | r578 | 320 | 75.5 | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/prune/yolov3_mobilenet_v1_voc_prune578.tar) | ### 蒸馏通道剪裁模型 可通过高精度模型蒸馏通道剪裁后模型的方式,训练方法及相关示例见[蒸馏通道剪裁模型](./extensions/distill_pruned_model/distill_pruned_model_demo.ipynb)。 COCO数据集上蒸馏通道剪裁模型库如下。 | 骨架网络 | 剪裁策略 | 输入尺寸 | teacher模型 | Box AP | 下载 | | :----------------| :-------: | :------: | :--------------------- | :-----: | :-----------------------------------------------------: | | ResNet50-vd-dcn | r578 | 608 | YOLOv3-ResNet50-vd-dcn | 39.7 | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/prune/yolov3_r50_dcn_prune578_distill.tar) | | MobileNetV1 | r578 | 608 | YOLOv3-ResNet34 | 29.0 | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/prune/yolov3_mobilenet_v1_prune578_distillby_r34.tar) | | MobileNetV1 | r578 | 416 | YOLOv3-ResNet34 | 28.0 | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/prune/yolov3_mobilenet_v1_prune578_distillby_r34.tar) | | MobileNetV1 | r578 | 320 | YOLOv3-ResNet34 | 25.1 | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/prune/yolov3_mobilenet_v1_prune578_distillby_r34.tar) | Pascal VOC数据集上蒸馏通道剪裁模型库如下。 | 骨架网络 | 剪裁策略 | 输入尺寸 | teacher模型 | Box AP | 下载 | | :----------------| :-------: | :------: | :--------------------- | :-----: | :-----------------------------------------------------: | | MobileNetV1 | r578 | 608 | YOLOv3-ResNet34 | 78.8 | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/prune/yolov3_mobilenet_v1_voc_prune578_distillby_r34.tar) | | MobileNetV1 | r578 | 416 | YOLOv3-ResNet34 | 78.7 | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/prune/yolov3_mobilenet_v1_voc_prune578_distillby_r34.tar) | | MobileNetV1 | r578 | 320 | YOLOv3-ResNet34 | 76.3 | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/prune/yolov3_mobilenet_v1_voc_prune578_distillby_r34.tar) | ## 蒸馏模型库 ### 训练策略 - 蒸馏模型训练时teacher模型使用[PaddleDetection模型库](../docs/MODEL_ZOO_cn.md)发布的模型权重作为预训练权重。 - 蒸馏模型训练时student模型使用backbone的预训练权重 ### YOLOv3 on COCO | 骨架网络 | 蒸馏策略 | 输入尺寸 | Box AP | 下载 | | :----------------| :-----------: | :------: |:------: | :-----------------------------------------------------: | | MobileNetV1 | split_distiil | 608 | 31.4 | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/yolov3_mobilenetv1_coco_distilled.tar) | | MobileNetV1 | split_distiil | 416 | 30.0 | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/yolov3_mobilenetv1_coco_distilled.tar) | | MobileNetV1 | split_distiil | 320 | 27.1 | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/yolov3_mobilenetv1_coco_distilled.tar) | ### YOLOv3 on Pascal VOC | 骨架网络 | 蒸馏策略 | 输入尺寸 | Box AP | 下载 | | :----------------| :-----------: | :------: |:------: | :-----------------------------------------------------: | | MobileNetV1 | l2_distiil | 608 | 79.0 | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/yolov3_mobilenetv1_voc_distilled.tar) | | MobileNetV1 | l2_distiil | 416 | 78.2 | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/yolov3_mobilenetv1_voc_distilled.tar) | | MobileNetV1 | l2_distiil | 320 | 75.5 | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/yolov3_mobilenetv1_voc_distilled.tar) | ## 量化模型库 ### 训练策略 - 量化策略`post`为使用离线量化得到的模型,`aware`为在线量化训练得到的模型。 ### YOLOv3 on COCO | 骨架网络 | 预训练权重 | 量化策略 | 输入尺寸 | Box AP | 下载 | | :----------------| :--------: | :------: | :------: |:------: | :-----------------------------------------------------: | | MobileNetV1 | ImageNet | post | 608 | 27.9 | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/yolov3_mobilenetv1_coco_quant_post.tar) | | MobileNetV1 | ImageNet | post | 416 | 28.0 | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/yolov3_mobilenetv1_coco_quant_post.tar) | | MobileNetV1 | ImageNet | post | 320 | 26.0 | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/yolov3_mobilenetv1_coco_quant_post.tar) | | MobileNetV1 | ImageNet | aware | 608 | 28.1 | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/yolov3_mobilenetv1_coco_quant_aware.tar) | | MobileNetV1 | ImageNet | aware | 416 | 28.2 | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/yolov3_mobilenetv1_coco_quant_aware.tar) | | MobileNetV1 | ImageNet | aware | 320 | 25.8 | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/yolov3_mobilenetv1_coco_quant_aware.tar) | | ResNet34 | ImageNet | post | 608 | 35.7 | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/yolov3_r34_coco_quant_post.tar) | | ResNet34 | ImageNet | aware | 608 | 35.2 | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/yolov3_r34_coco_quant_aware.tar) | | ResNet34 | ImageNet | aware | 416 | 33.3 | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/yolov3_r34_coco_quant_aware.tar) | | ResNet34 | ImageNet | aware | 320 | 30.3 | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/yolov3_r34_coco_quant_aware.tar) | | R50vd-dcn | object365 | aware | 608 | 40.6 | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/yolov3_r50vd_dcn_obj365_pretrained_coco_quant_aware.tar) | | R50vd-dcn | object365 | aware | 416 | 37.5 | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/yolov3_r50vd_dcn_obj365_pretrained_coco_quant_aware.tar) | | R50vd-dcn | object365 | aware | 320 | 34.1 | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/yolov3_r50vd_dcn_obj365_pretrained_coco_quant_aware.tar) | ### BlazeFace on WIDER FACE | 模型 | 量化策略 | 输入尺寸 | Easy Set | Medium Set | Hard Set | 下载 | | :--------------- | :------: | :------: | :------: | :--------: | :------: | :-----------------------------------------------------: | | BlazeFace | post | 640 | 87.8 | 85.1 | 74.9 | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/blazeface_origin_quant_post.tar) | | BlazeFace | aware | 640 | 90.5 | 87.9 | 77.6 | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/blazeface_origin_quant_aware.tar) | | BlazeFace-Lite | post | 640 | 89.4 | 86.7 | 75.7 | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/blazeface_lite_quant_post.tar) | | BlazeFace-Lite | aware | 640 | 89.7 | 87.3 | 77.0 | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/blazeface_lite_quant_aware.tar) | | BlazeFace-NAS | post | 640 | 81.6 | 78.3 | 63.6 | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/blazeface_nas_quant_post.tar) | | BlazeFace-NAS | aware | 640 | 83.1 | 79.7 | 64.2 | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/blazeface_nas_quant_aware.tar) |