architecture: YOLOv3 use_gpu: true max_iters: 500000 log_iter: 20 save_dir: output snapshot_iter: 50000 metric: COCO pretrain_weights: https://paddle-imagenet-models-name.bj.bcebos.com/DarkNet53_pretrained.tar weights: output/yolov3_darknet/model_final num_classes: 80 use_fine_grained_loss: false load_static_weights: True YOLOv3: backbone: DarkNet neck: YOLOv3FPN yolo_head: YOLOv3Head post_process: BBoxPostProcess DarkNet: depth: 53 return_idx: [2, 3, 4] YOLOv3FPN: feat_channels: [1024, 768, 384] YOLOv3Head: anchors: [10, 13, 16, 30, 33, 23, 30, 61, 62, 45, 59, 119, 116, 90, 156, 198, 373, 326] anchor_masks: [[6, 7, 8], [3, 4, 5], [0, 1, 2]] loss: YOLOv3Loss YOLOv3Loss: ignore_thresh: 0.7 downsample: 32 label_smooth: true BBoxPostProcess: decode: name: YOLOBox conf_thresh: 0.005 downsample_ratio: 32 clip_bbox: true nms: name: MultiClassNMS keep_top_k: 100 score_threshold: 0.01 nms_threshold: 0.45 nms_top_k: 1000 normalized: false background_label: -1 LearningRate: base_lr: 0.001 schedulers: - !PiecewiseDecay gamma: 0.1 milestones: - 400000 - 450000 - !LinearWarmup start_factor: 0. steps: 4000 OptimizerBuilder: optimizer: momentum: 0.9 type: Momentum regularizer: factor: 0.0005 type: L2 _READER_: 'yolov3_reader.yml'