# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import paddle from ppdet.core.workspace import register from .meta_arch import BaseArch __all__ = ['TTFNet'] @register class TTFNet(BaseArch): """ TTFNet network, see https://arxiv.org/abs/1909.00700 Args: backbone (object): backbone instance neck (object): 'TTFFPN' instance ttf_head (object): 'TTFHead' instance post_process (object): 'BBoxPostProcess' instance """ __category__ = 'architecture' __inject__ = [ 'backbone', 'neck', 'ttf_head', 'post_process', ] def __init__(self, backbone='DarkNet', neck='TTFFPN', ttf_head='TTFHead', post_process='BBoxPostProcess'): super(TTFNet, self).__init__() self.backbone = backbone self.neck = neck self.ttf_head = ttf_head self.post_process = post_process def model_arch(self, ): # Backbone body_feats = self.backbone(self.inputs) # neck body_feats = self.neck(body_feats) # TTF Head self.hm, self.wh = self.ttf_head(body_feats) def get_loss(self, ): loss = {} heatmap = self.inputs['ttf_heatmap'] box_target = self.inputs['ttf_box_target'] reg_weight = self.inputs['ttf_reg_weight'] head_loss = self.ttf_head.get_loss(self.hm, self.wh, heatmap, box_target, reg_weight) loss.update(head_loss) total_loss = paddle.add_n(list(loss.values())) loss.update({'loss': total_loss}) return loss def get_pred(self): bbox, bbox_num = self.post_process(self.hm, self.wh, self.inputs['im_shape'], self.inputs['scale_factor']) outs = { "bbox": bbox, "bbox_num": bbox_num, } return outs