// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/fluid/inference/analysis/analyzer.h" #include #include #include // NOLINT #include "paddle/fluid/framework/ir/fuse_pass_base.h" #include "paddle/fluid/framework/ir/pass.h" #include "paddle/fluid/inference/analysis/ut_helper.h" #include "paddle/fluid/inference/api/analysis_predictor.h" #include "paddle/fluid/inference/api/helper.h" #include "paddle/fluid/inference/api/paddle_inference_api.h" #include "paddle/fluid/inference/api/paddle_inference_pass.h" DEFINE_string(infer_model, "", "model path"); DEFINE_string(infer_data, "", "data path"); DEFINE_int32(batch_size, 1, "batch size."); DEFINE_int32(repeat, 1, "Running the inference program repeat times."); DEFINE_int32(num_threads, 1, "Running the inference program in multi-threads."); namespace paddle { namespace inference { using namespace framework; // NOLINT struct DataRecord { std::vector>> link_step_data_all; std::vector lod; std::vector> rnn_link_data; std::vector result_data; size_t batch_iter{0}; size_t batch_size{1}; DataRecord() = default; explicit DataRecord(const std::string &path, int batch_size = 1) : batch_size(batch_size) { Load(path); } DataRecord NextBatch() { DataRecord data; size_t batch_end = batch_iter + batch_size; // NOTE skip the final batch, if no enough data is provided. if (batch_end <= link_step_data_all.size()) { data.link_step_data_all.assign(link_step_data_all.begin() + batch_iter, link_step_data_all.begin() + batch_end); // Prepare LoDs data.lod.push_back(0); CHECK(!data.link_step_data_all.empty()) << "empty"; for (size_t j = 0; j < data.link_step_data_all.size(); j++) { for (const auto &d : data.link_step_data_all[j]) { data.rnn_link_data.push_back(d); // calculate lod data.lod.push_back(data.lod.back() + 11); } } } batch_iter += batch_size; return data; } void Load(const std::string &path) { std::ifstream file(path); std::string line; int num_lines = 0; while (std::getline(file, line)) { num_lines++; std::vector data; split(line, ':', &data); if (num_lines % 2) { // feature std::vector feature_data; split(data[1], ' ', &feature_data); std::vector> link_step_data; int feature_count = 1; std::vector feature; for (auto &step_data : feature_data) { std::vector tmp; split_to_float(step_data, ',', &tmp); feature.insert(feature.end(), tmp.begin(), tmp.end()); if (feature_count % 11 == 0) { // each sample has 11 features link_step_data.push_back(feature); feature.clear(); } feature_count++; } link_step_data_all.push_back(std::move(link_step_data)); } else { // result std::vector tmp; split_to_float(data[1], ',', &tmp); result_data.insert(result_data.end(), tmp.begin(), tmp.end()); } } } }; void PrepareInputs(std::vector *input_slots, DataRecord *data, int batch_size) { PaddleTensor feed_tensor; feed_tensor.name = "feed"; auto one_batch = data->NextBatch(); int token_size = one_batch.rnn_link_data.size(); // each token has 11 features, each feature's dim is 54. std::vector rnn_link_data_shape({token_size * 11, 54}); feed_tensor.shape = rnn_link_data_shape; feed_tensor.lod.assign({one_batch.lod}); feed_tensor.dtype = PaddleDType::FLOAT32; TensorAssignData(&feed_tensor, one_batch.rnn_link_data); // Set inputs. input_slots->assign({feed_tensor}); } void CompareResult(const std::vector &outputs, const std::vector &base_result) { PADDLE_ENFORCE_GT(outputs.size(), 0); for (size_t i = 0; i < outputs.size(); i++) { auto &out = outputs[i]; size_t size = std::accumulate(out.shape.begin(), out.shape.end(), 1, [](int a, int b) { return a * b; }); PADDLE_ENFORCE_GT(size, 0); float *data = static_cast(out.data.data()); for (size_t i = 0; i < size; i++) { EXPECT_NEAR(data[i], base_result[i], 1e-3); } } } // Test with a really complicate model. void TestRNN2Prediction() { AnalysisConfig config; config.prog_file = FLAGS_infer_model + "/__model__"; config.param_file = FLAGS_infer_model + "/param"; config.use_gpu = false; config.device = 0; config.specify_input_name = true; config.enable_ir_optim = true; PADDLE_ENFORCE(config.ir_mode == AnalysisConfig::IrPassMode::kExclude); // default int batch_size = FLAGS_batch_size; int num_times = FLAGS_repeat; auto base_predictor = CreatePaddlePredictor(config); auto predictor = CreatePaddlePredictor( config); std::vector input_slots; DataRecord data(FLAGS_infer_data, batch_size); PrepareInputs(&input_slots, &data, batch_size); std::vector outputs, base_outputs; Timer timer1; timer1.tic(); for (int i = 0; i < num_times; i++) { base_predictor->Run(input_slots, &base_outputs); } PrintTime(batch_size, num_times, 1, 0, timer1.toc() / num_times); Timer timer2; timer2.tic(); for (int i = 0; i < num_times; i++) { predictor->Run(input_slots, &outputs); } PrintTime(batch_size, num_times, 1, 0, timer2.toc() / num_times); CompareResult(base_outputs, data.result_data); CompareResult(outputs, data.result_data); } TEST(Analyzer, rnn2) { TestRNN2Prediction(); } } // namespace inference } // namespace paddle