# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import sys import math import paddle import paddle.nn as nn import paddle.optimizer as optimizer import paddle.regularizer as regularizer from ppdet.core.workspace import register, serializable import copy from .adamw import AdamWDL, build_adamwdl __all__ = ['LearningRate', 'OptimizerBuilder'] from ppdet.utils.logger import setup_logger logger = setup_logger(__name__) @serializable class CosineDecay(object): """ Cosine learning rate decay Args: max_epochs (int): max epochs for the training process. if you commbine cosine decay with warmup, it is recommended that the max_iters is much larger than the warmup iter use_warmup (bool): whether to use warmup. Default: True. min_lr_ratio (float): minimum learning rate ratio. Default: 0. last_plateau_epochs (int): use minimum learning rate in the last few epochs. Default: 0. """ def __init__(self, max_epochs=1000, use_warmup=True, min_lr_ratio=0., last_plateau_epochs=0): self.max_epochs = max_epochs self.use_warmup = use_warmup self.min_lr_ratio = min_lr_ratio self.last_plateau_epochs = last_plateau_epochs def __call__(self, base_lr=None, boundary=None, value=None, step_per_epoch=None): assert base_lr is not None, "either base LR or values should be provided" max_iters = self.max_epochs * int(step_per_epoch) last_plateau_iters = self.last_plateau_epochs * int(step_per_epoch) min_lr = base_lr * self.min_lr_ratio if boundary is not None and value is not None and self.use_warmup: # use warmup warmup_iters = len(boundary) for i in range(int(boundary[-1]), max_iters): boundary.append(i) if i < max_iters - last_plateau_iters: decayed_lr = min_lr + (base_lr - min_lr) * 0.5 * (math.cos( (i - warmup_iters) * math.pi / (max_iters - warmup_iters - last_plateau_iters)) + 1) value.append(decayed_lr) else: value.append(min_lr) return optimizer.lr.PiecewiseDecay(boundary, value) elif last_plateau_iters > 0: # not use warmup, but set `last_plateau_epochs` > 0 boundary = [] value = [] for i in range(max_iters): if i < max_iters - last_plateau_iters: decayed_lr = min_lr + (base_lr - min_lr) * 0.5 * (math.cos( i * math.pi / (max_iters - last_plateau_iters)) + 1) value.append(decayed_lr) else: value.append(min_lr) if i > 0: boundary.append(i) return optimizer.lr.PiecewiseDecay(boundary, value) return optimizer.lr.CosineAnnealingDecay( base_lr, T_max=max_iters, eta_min=min_lr) @serializable class PiecewiseDecay(object): """ Multi step learning rate decay Args: gamma (float | list): decay factor milestones (list): steps at which to decay learning rate """ def __init__(self, gamma=[0.1, 0.01], milestones=[8, 11], values=None, use_warmup=True): super(PiecewiseDecay, self).__init__() if type(gamma) is not list: self.gamma = [] for i in range(len(milestones)): self.gamma.append(gamma / 10**i) else: self.gamma = gamma self.milestones = milestones self.values = values self.use_warmup = use_warmup def __call__(self, base_lr=None, boundary=None, value=None, step_per_epoch=None): if boundary is not None and self.use_warmup: boundary.extend([int(step_per_epoch) * i for i in self.milestones]) else: # do not use LinearWarmup boundary = [int(step_per_epoch) * i for i in self.milestones] value = [base_lr] # during step[0, boundary[0]] is base_lr # self.values is setted directly in config if self.values is not None: assert len(self.milestones) + 1 == len(self.values) return optimizer.lr.PiecewiseDecay(boundary, self.values) # value is computed by self.gamma value = value if value is not None else [base_lr] for i in self.gamma: value.append(base_lr * i) return optimizer.lr.PiecewiseDecay(boundary, value) @serializable class LinearWarmup(object): """ Warm up learning rate linearly Args: steps (int): warm up steps start_factor (float): initial learning rate factor epochs (int|None): use epochs as warm up steps, the priority of `epochs` is higher than `steps`. Default: None. """ def __init__(self, steps=500, start_factor=1. / 3, epochs=None): super(LinearWarmup, self).__init__() self.steps = steps self.start_factor = start_factor self.epochs = epochs def __call__(self, base_lr, step_per_epoch): boundary = [] value = [] warmup_steps = self.epochs * step_per_epoch \ if self.epochs is not None else self.steps for i in range(warmup_steps + 1): if warmup_steps > 0: alpha = i / warmup_steps factor = self.start_factor * (1 - alpha) + alpha lr = base_lr * factor value.append(lr) if i > 0: boundary.append(i) return boundary, value @serializable class BurninWarmup(object): """ Warm up learning rate in burnin mode Args: steps (int): warm up steps """ def __init__(self, steps=1000): super(BurninWarmup, self).__init__() self.steps = steps def __call__(self, base_lr, step_per_epoch): boundary = [] value = [] burnin = min(self.steps, step_per_epoch) for i in range(burnin + 1): factor = (i * 1.0 / burnin)**4 lr = base_lr * factor value.append(lr) if i > 0: boundary.append(i) return boundary, value @serializable class ExpWarmup(object): """ Warm up learning rate in exponential mode Args: steps (int): warm up steps. epochs (int|None): use epochs as warm up steps, the priority of `epochs` is higher than `steps`. Default: None. """ def __init__(self, steps=5, epochs=None): super(ExpWarmup, self).__init__() self.steps = steps self.epochs = epochs def __call__(self, base_lr, step_per_epoch): boundary = [] value = [] warmup_steps = self.epochs * step_per_epoch if self.epochs is not None else self.steps for i in range(warmup_steps + 1): factor = (i / float(warmup_steps))**2 value.append(base_lr * factor) if i > 0: boundary.append(i) return boundary, value @register class LearningRate(object): """ Learning Rate configuration Args: base_lr (float): base learning rate schedulers (list): learning rate schedulers """ __category__ = 'optim' def __init__(self, base_lr=0.01, schedulers=[PiecewiseDecay(), LinearWarmup()]): super(LearningRate, self).__init__() self.base_lr = base_lr self.schedulers = [] schedulers = copy.deepcopy(schedulers) for sched in schedulers: if isinstance(sched, dict): # support dict sched instantiate module = sys.modules[__name__] type = sched.pop("name") scheduler = getattr(module, type)(**sched) self.schedulers.append(scheduler) else: self.schedulers.append(sched) def __call__(self, step_per_epoch): assert len(self.schedulers) >= 1 if not self.schedulers[0].use_warmup: return self.schedulers[0](base_lr=self.base_lr, step_per_epoch=step_per_epoch) # TODO: split warmup & decay # warmup boundary, value = self.schedulers[1](self.base_lr, step_per_epoch) # decay decay_lr = self.schedulers[0](self.base_lr, boundary, value, step_per_epoch) return decay_lr @register class OptimizerBuilder(): """ Build optimizer handles Args: regularizer (object): an `Regularizer` instance optimizer (object): an `Optimizer` instance """ __category__ = 'optim' def __init__(self, clip_grad_by_norm=None, regularizer={'type': 'L2', 'factor': .0001}, optimizer={'type': 'Momentum', 'momentum': .9}): self.clip_grad_by_norm = clip_grad_by_norm self.regularizer = regularizer self.optimizer = optimizer def __call__(self, learning_rate, model=None): if self.clip_grad_by_norm is not None: grad_clip = nn.ClipGradByGlobalNorm( clip_norm=self.clip_grad_by_norm) else: grad_clip = None if self.regularizer and self.regularizer != 'None': reg_type = self.regularizer['type'] + 'Decay' reg_factor = self.regularizer['factor'] regularization = getattr(regularizer, reg_type)(reg_factor) else: regularization = None optim_args = self.optimizer.copy() optim_type = optim_args['type'] del optim_args['type'] if optim_type == 'AdamWDL': return build_adamwdl(model, lr=learning_rate, **optim_args) if optim_type != 'AdamW': optim_args['weight_decay'] = regularization op = getattr(optimizer, optim_type) if 'param_groups' in optim_args: assert isinstance(optim_args['param_groups'], list), '' param_groups = optim_args.pop('param_groups') params, visited = [], [] for group in param_groups: assert isinstance(group, dict) and 'params' in group and isinstance( group['params'], list), '' _params = { n: p for n, p in model.named_parameters() if any([k in n for k in group['params']]) } _group = group.copy() _group.update({'params': list(_params.values())}) params.append(_group) visited.extend(list(_params.keys())) ext_params = [ p for n, p in model.named_parameters() if n not in visited ] if len(ext_params) < len(model.parameters()): params.append({'params': ext_params}) elif len(ext_params) > len(model.parameters()): raise RuntimeError else: params = model.parameters() train_params = [param for param in params if param.trainable is True] return op(learning_rate=learning_rate, parameters=train_params, grad_clip=grad_clip, **optim_args)