English | [简体中文](attribute.md) # Attribute Recognition Modules of PP-Human Pedestrian attribute recognition has been widely used in the intelligent community, industrial, and transportation monitoring. Many attribute recognition modules have been gathered in PP-Human, including gender, age, hats, eyes, clothing and up to 26 attributes in total. Also, the pre-trained models are offered here and users can download and use them directly. | Task | Algorithm | Precision | Inference Speed(ms) | Download Link | |:---------------------|:---------:|:------:|:------:| :---------------------------------------------------------------------------------: | | High-Precision Model | PP-HGNet_small | mA: 95.4 | per person 1.54ms | [Download](https://bj.bcebos.com/v1/paddledet/models/pipeline/PPHGNet_small_person_attribute_954_infer.tar) | | Fast Model | PP-LCNet_x1_0 | mA: 94.5 | per person 0.54ms | [Download](https://bj.bcebos.com/v1/paddledet/models/pipeline/PPLCNet_x1_0_person_attribute_945_infer.tar) | | Balanced Model | PP-HGNet_tiny | mA: 95.2 | per person 1.14ms | [Download](https://bj.bcebos.com/v1/paddledet/models/pipeline/PPHGNet_tiny_person_attribute_952_infer.tar) | 1. The precision of pedestiran attribute analysis is obtained by training and testing on the dataset consist of [PA100k](https://github.com/xh-liu/HydraPlus-Net#pa-100k-dataset),[RAPv2](http://www.rapdataset.com/rapv2.html),[PETA](http://mmlab.ie.cuhk.edu.hk/projects/PETA.html) and some business data. 2. The inference speed is V100, the speed of using TensorRT FP16. 3. This model of Attribute is based on the result of tracking, please download tracking model in the [Page of Mot](./mot_en.md). The High precision and Faster model are both available. 4. You should place the model unziped in the directory of `PaddleDetection/output_inference/`. ## Instruction 1. Download the model from the link in the above table, and unzip it to```./output_inference```, and set the "enable: True" in ATTR of infer_cfg_pphuman.yml The meaning of configs of `infer_cfg_pphuman.yml`: ``` ATTR: #module name model_dir: output_inference/PPLCNet_x1_0_person_attribute_945_infer/ #model path batch_size: 8 #maxmum batchsize when inference basemode: "idbased" #the routing type of pipeline,'idbased' means this model is based on tracking. enable: False #whether to enable this model ``` 2. When inputting the image, run the command as follows (please refer to [QUICK_STARTED-Parameters](./QUICK_STARTED.md#41-参数说明) for more details): ```python #single image python deploy/pipeline/pipeline.py --config deploy/pipeline/config/infer_cfg_pphuman.yml \ --image_file=test_image.jpg \ --device=gpu \ #image directory python deploy/pipeline/pipeline.py --config deploy/pipeline/config/infer_cfg_pphuman.yml \ --image_dir=images/ \ --device=gpu \ ``` 3. When inputting the video, run the command as follows: ```python #a single video file python deploy/pipeline/pipeline.py --config deploy/pipeline/config/infer_cfg_pphuman.yml \ --video_file=test_video.mp4 \ --device=gpu \ #directory of videos python deploy/pipeline/pipeline.py --config deploy/pipeline/config/infer_cfg_pphuman.yml \ --video_dir=test_videos/ \ --device=gpu \ ``` 4. If you want to change the model path, there are two methods: - The first: In ```./deploy/pipeline/config/infer_cfg_pphuman.yml``` you can configurate different model paths. In attribute recognition models, you can modify the configuration in the field of ATTR. - The second: Add `--model_dir` in the command line to change the model path: ```python python deploy/pipeline/pipeline.py --config deploy/pipeline/config/infer_cfg_pphuman.yml \ --video_file=test_video.mp4 \ --device=gpu \ --model_dir attr=output_inference/PPLCNet_x1_0_person_attribute_945_infer/ ``` The test result is: