architecture: YOLOv3 pretrain_weights: https://paddledet.bj.bcebos.com/models/ppyolov2_r50vd_dcn_365e_coco.pdparams norm_type: sync_bn use_ema: true ema_decay: 0.9998 use_gpu: true use_xpu: false log_iter: 100 save_dir: output metric: COCO num_classes: 22 TrainDataset: !COCODataSet image_dir: train_images anno_path: train.json dataset_dir: dataset/renche data_fields: ['image', 'gt_bbox', 'gt_class', 'is_crowd'] EvalDataset: !COCODataSet image_dir: train_images anno_path: test.json dataset_dir: dataset/renche TestDataset: !ImageFolder anno_path: dataset/renche/test.json epoch: 100 LearningRate: base_lr: 0.0002 schedulers: - !PiecewiseDecay gamma: 0.1 milestones: - 80 - !LinearWarmup start_factor: 0. steps: 1000 snapshot_epoch: 3 worker_num: 8 TrainReader: inputs_def: num_max_boxes: 100 sample_transforms: - Decode: {} - RandomDistort: {} - RandomExpand: {fill_value: [123.675, 116.28, 103.53]} - RandomCrop: {} - RandomFlip: {} batch_transforms: - BatchRandomResize: {target_size: [960, 992, 1024, 1056, 1088], random_size: True, random_interp: True, keep_ratio: False} - NormalizeBox: {} - PadBox: {num_max_boxes: 100} - BboxXYXY2XYWH: {} - NormalizeImage: {mean: [0.485, 0.456, 0.406], std: [0.229, 0.224, 0.225], is_scale: True} - Permute: {} - Gt2YoloTarget: {anchor_masks: [[6, 7, 8], [3, 4, 5], [0, 1, 2]], anchors: [[10, 13], [16, 30], [33, 23], [30, 61], [62, 45], [59, 119], [116, 90], [156, 198], [373, 326]], downsample_ratios: [32, 16, 8]} batch_size: 2 shuffle: true drop_last: true use_shared_memory: true EvalReader: sample_transforms: - Decode: {} - Resize: {target_size: [1024, 1024], keep_ratio: False, interp: 2} - NormalizeImage: {mean: [0.485, 0.456, 0.406], std: [0.229, 0.224, 0.225], is_scale: True} - Permute: {} batch_size: 8 TestReader: inputs_def: image_shape: [3, 1024, 1024] sample_transforms: - Decode: {} - Resize: {target_size: [1024, 1024], keep_ratio: False, interp: 2} - NormalizeImage: {mean: [0.485, 0.456, 0.406], std: [0.229, 0.224, 0.225], is_scale: True} - Permute: {} batch_size: 1 OptimizerBuilder: clip_grad_by_norm: 35. optimizer: momentum: 0.9 type: Momentum regularizer: factor: 0.0005 type: L2 YOLOv3: backbone: ResNet neck: PPYOLOPAN yolo_head: YOLOv3Head post_process: BBoxPostProcess ResNet: depth: 50 variant: d return_idx: [1, 2, 3] dcn_v2_stages: [3] freeze_at: -1 freeze_norm: false norm_decay: 0. PPYOLOPAN: drop_block: true block_size: 3 keep_prob: 0.9 spp: true YOLOv3Head: anchors: [[10, 13], [16, 30], [33, 23], [30, 61], [62, 45], [59, 119], [116, 90], [156, 198], [373, 326]] anchor_masks: [[6, 7, 8], [3, 4, 5], [0, 1, 2]] loss: YOLOv3Loss iou_aware: true iou_aware_factor: 0.5 YOLOv3Loss: ignore_thresh: 0.7 downsample: [32, 16, 8] label_smooth: false scale_x_y: 1.05 iou_loss: IouLoss iou_aware_loss: IouAwareLoss IouLoss: loss_weight: 2.5 loss_square: true IouAwareLoss: loss_weight: 1.0 BBoxPostProcess: decode: name: YOLOBox conf_thresh: 0.01 downsample_ratio: 32 clip_bbox: true scale_x_y: 1.05 nms: name: MatrixNMS keep_top_k: 100 score_threshold: 0.01 post_threshold: 0.01 nms_top_k: -1 background_label: -1