/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #define EIGEN_USE_GPU #include "paddle/fluid/operators/adagrad_op.h" #include "paddle/fluid/operators/math/math_function.h" #include "paddle/fluid/operators/math/selected_rows_functor.h" #include "paddle/fluid/platform/cuda_primitives.h" namespace paddle { namespace operators { namespace { template __global__ void MergeGradKernel(const T* grad, const int64_t* grad_rows, T* grad_merge, const int64_t* grad_merge_rows, size_t grad_merge_rows_size, int64_t row_numel) { const int ty = blockIdx.y; int tid = threadIdx.x; __shared__ size_t grad_merge_idx; if (tid == 0) { for (size_t i = 0; i < grad_merge_rows_size; i++) { if (grad_rows[ty] == grad_merge_rows[i]) { grad_merge_idx = i; } } } __syncthreads(); grad += ty * row_numel; grad_merge += grad_merge_idx * row_numel; for (int index = tid; index < row_numel; index += block_size) { paddle::platform::CudaAtomicAdd(grad_merge + index, grad[index]); } } template __global__ void SparseAdagradFunctorKernel(const T* grad, const int64_t* rows, const T* learning_rate, T* param, T* moment, int64_t row_numel, T epsilon) { const int ty = blockIdx.y; int tid = threadIdx.x; grad += ty * row_numel; param += rows[ty] * row_numel; moment += rows[ty] * row_numel; for (int index = tid; index < row_numel; index += block_size) { // Since index in rows of SelectedRows can be duplicate, we have to use // Atomic Operation to avoid concurrent write error. paddle::platform::CudaAtomicAdd(param + index, -1.0 * learning_rate[0] * grad[index] / (sqrt(moment[index]) + epsilon)); } } } // namespace template struct SparseAdagradFunctor { void operator()(const platform::CUDADeviceContext& context, const framework::SelectedRows& grad, const framework::Tensor& learning_rate, T epsilon, framework::Tensor* moment, framework::Tensor* param) { // 1. g_m.rows = set(g.rows) auto grad_width = grad.value().dims()[1]; math::scatter::MergeAdd merge_func; auto grad_merge = merge_func(context, grad); auto* grad_merge_data = grad_merge.mutable_value()->template data(); framework::Vector merge_rows(grad_merge.rows()); // 2. m += g_m * g_m auto grad_square = SquareSelectedRows(context, grad_merge); math::SelectedRowsAddToTensor functor; functor(context, grad_square, moment); // 3. update parameter auto* lr = learning_rate.data(); auto* param_data = param->data(); auto* moment_data = moment->data(); const int block_size = 256; dim3 threads(block_size, 1); dim3 grid2(1, merge_rows.size()); SparseAdagradFunctorKernel< T, 256><<(context) .stream()>>>( grad_merge_data, merge_rows.CUDAMutableData(context.GetPlace()), lr, param_data, moment_data, grad_width, epsilon); } }; template struct SparseAdagradFunctor; template struct SparseAdagradFunctor; } // namespace operators } // namespace paddle namespace ops = paddle::operators; REGISTER_OP_CUDA_KERNEL( adagrad, ops::AdagradOpKernel, ops::AdagradOpKernel);