# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ This code is based on https://github.com/LCFractal/AIC21-MTMC/tree/main/reid/reid-matching/tools Note: The following codes are strongly related to camera parameters of the AIC21 test-set S06, so they can only be used in S06, and can not be used for other MTMCT datasets. """ import numpy as np from sklearn.cluster import AgglomerativeClustering from .utils import get_dire, get_match, get_cid_tid, combin_feature, combin_cluster from .utils import normalize, intracam_ignore, visual_rerank __all__ = [ 'st_filter', 'get_labels_with_camera', ] CAM_DIST = [[0, 40, 55, 100, 120, 145], [40, 0, 15, 60, 80, 105], [55, 15, 0, 40, 65, 90], [100, 60, 40, 0, 20, 45], [120, 80, 65, 20, 0, 25], [145, 105, 90, 45, 25, 0]] def st_filter(st_mask, cid_tids, cid_tid_dict): count = len(cid_tids) for i in range(count): i_tracklet = cid_tid_dict[cid_tids[i]] i_cid = i_tracklet['cam'] i_dire = get_dire(i_tracklet['zone_list'], i_cid) i_iot = i_tracklet['io_time'] for j in range(count): j_tracklet = cid_tid_dict[cid_tids[j]] j_cid = j_tracklet['cam'] j_dire = get_dire(j_tracklet['zone_list'], j_cid) j_iot = j_tracklet['io_time'] match_dire = True cam_dist = CAM_DIST[i_cid - 41][j_cid - 41] # if time overlopped if i_iot[0] - cam_dist < j_iot[0] and j_iot[0] < i_iot[ 1] + cam_dist: match_dire = False if i_iot[0] - cam_dist < j_iot[1] and j_iot[1] < i_iot[ 1] + cam_dist: match_dire = False # not match after go out if i_dire[1] in [1, 2]: # i out if i_iot[0] < j_iot[1] + cam_dist: match_dire = False if i_dire[1] in [1, 2]: if i_dire[0] in [3] and i_cid > j_cid: match_dire = False if i_dire[0] in [4] and i_cid < j_cid: match_dire = False if i_cid in [41] and i_dire[1] in [4]: if i_iot[0] < j_iot[1] + cam_dist: match_dire = False if i_iot[1] > 199: match_dire = False if i_cid in [46] and i_dire[1] in [3]: if i_iot[0] < j_iot[1] + cam_dist: match_dire = False # match after come into if i_dire[0] in [1, 2]: if i_iot[1] > j_iot[0] - cam_dist: match_dire = False if i_dire[0] in [1, 2]: if i_dire[1] in [3] and i_cid > j_cid: match_dire = False if i_dire[1] in [4] and i_cid < j_cid: match_dire = False is_ignore = False if ((i_dire[0] == i_dire[1] and i_dire[0] in [3, 4]) or (j_dire[0] == j_dire[1] and j_dire[0] in [3, 4])): is_ignore = True if not is_ignore: # direction conflict if (i_dire[0] in [3] and j_dire[0] in [4]) or ( i_dire[1] in [3] and j_dire[1] in [4]): match_dire = False # filter before going next scene if i_dire[1] in [3] and i_cid < j_cid: if i_iot[1] > j_iot[1] - cam_dist: match_dire = False if i_dire[1] in [4] and i_cid > j_cid: if i_iot[1] > j_iot[1] - cam_dist: match_dire = False if i_dire[0] in [3] and i_cid < j_cid: if i_iot[0] < j_iot[0] + cam_dist: match_dire = False if i_dire[0] in [4] and i_cid > j_cid: if i_iot[0] < j_iot[0] + cam_dist: match_dire = False ## 3-30 ## 4-1 if i_dire[0] in [3] and i_cid > j_cid: if i_iot[1] > j_iot[0] - cam_dist: match_dire = False if i_dire[0] in [4] and i_cid < j_cid: if i_iot[1] > j_iot[0] - cam_dist: match_dire = False # filter before going next scene ## 4-7 if i_dire[1] in [3] and i_cid > j_cid: if i_iot[0] < j_iot[1] + cam_dist: match_dire = False if i_dire[1] in [4] and i_cid < j_cid: if i_iot[0] < j_iot[1] + cam_dist: match_dire = False else: if i_iot[1] > 199: if i_dire[0] in [3] and i_cid < j_cid: if i_iot[0] < j_iot[0] + cam_dist: match_dire = False if i_dire[0] in [4] and i_cid > j_cid: if i_iot[0] < j_iot[0] + cam_dist: match_dire = False if i_dire[0] in [3] and i_cid > j_cid: match_dire = False if i_dire[0] in [4] and i_cid < j_cid: match_dire = False if i_iot[0] < 1: if i_dire[1] in [3] and i_cid > j_cid: match_dire = False if i_dire[1] in [4] and i_cid < j_cid: match_dire = False if not match_dire: st_mask[i, j] = 0.0 st_mask[j, i] = 0.0 return st_mask def subcam_list(cid_tid_dict, cid_tids): sub_3_4 = dict() sub_4_3 = dict() for cid_tid in cid_tids: cid, tid = cid_tid tracklet = cid_tid_dict[cid_tid] zs, ze = get_dire(tracklet['zone_list'], cid) if zs in [3] and cid not in [46]: # 4 to 3 if not cid + 1 in sub_4_3: sub_4_3[cid + 1] = [] sub_4_3[cid + 1].append(cid_tid) if ze in [4] and cid not in [41]: # 4 to 3 if not cid in sub_4_3: sub_4_3[cid] = [] sub_4_3[cid].append(cid_tid) if zs in [4] and cid not in [41]: # 3 to 4 if not cid - 1 in sub_3_4: sub_3_4[cid - 1] = [] sub_3_4[cid - 1].append(cid_tid) if ze in [3] and cid not in [46]: # 3 to 4 if not cid in sub_3_4: sub_3_4[cid] = [] sub_3_4[cid].append(cid_tid) sub_cid_tids = dict() for i in sub_3_4: sub_cid_tids[(i, i + 1)] = sub_3_4[i] for i in sub_4_3: sub_cid_tids[(i, i - 1)] = sub_4_3[i] return sub_cid_tids def subcam_list2(cid_tid_dict, cid_tids): sub_dict = dict() for cid_tid in cid_tids: cid, tid = cid_tid if cid not in [41]: if not cid in sub_dict: sub_dict[cid] = [] sub_dict[cid].append(cid_tid) if cid not in [46]: if not cid + 1 in sub_dict: sub_dict[cid + 1] = [] sub_dict[cid + 1].append(cid_tid) return sub_dict def get_sim_matrix(cid_tid_dict, cid_tids, use_ff=True, use_rerank=True, use_st_filter=False): # Note: camera releated get_sim_matrix function, # which is different from the one in utils.py. count = len(cid_tids) q_arr = np.array( [cid_tid_dict[cid_tids[i]]['mean_feat'] for i in range(count)]) g_arr = np.array( [cid_tid_dict[cid_tids[i]]['mean_feat'] for i in range(count)]) q_arr = normalize(q_arr, axis=1) g_arr = normalize(g_arr, axis=1) st_mask = np.ones((count, count), dtype=np.float32) st_mask = intracam_ignore(st_mask, cid_tids) # different from utils.py if use_st_filter: st_mask = st_filter(st_mask, cid_tids, cid_tid_dict) visual_sim_matrix = visual_rerank( q_arr, g_arr, cid_tids, use_ff=use_ff, use_rerank=use_rerank) visual_sim_matrix = visual_sim_matrix.astype('float32') np.set_printoptions(precision=3) sim_matrix = visual_sim_matrix * st_mask np.fill_diagonal(sim_matrix, 0) return sim_matrix def get_labels_with_camera(cid_tid_dict, cid_tids, use_ff=True, use_rerank=True, use_st_filter=False): # 1st cluster sub_cid_tids = subcam_list(cid_tid_dict, cid_tids) sub_labels = dict() dis_thrs = [0.7, 0.5, 0.5, 0.5, 0.5, 0.7, 0.5, 0.5, 0.5, 0.5] for i, sub_c_to_c in enumerate(sub_cid_tids): sim_matrix = get_sim_matrix( cid_tid_dict, sub_cid_tids[sub_c_to_c], use_ff=use_ff, use_rerank=use_rerank, use_st_filter=use_st_filter) cluster_labels = AgglomerativeClustering( n_clusters=None, distance_threshold=1 - dis_thrs[i], affinity='precomputed', linkage='complete').fit_predict(1 - sim_matrix) labels = get_match(cluster_labels) cluster_cid_tids = get_cid_tid(labels, sub_cid_tids[sub_c_to_c]) sub_labels[sub_c_to_c] = cluster_cid_tids labels, sub_cluster = combin_cluster(sub_labels, cid_tids) # 2nd cluster cid_tid_dict_new = combin_feature(cid_tid_dict, sub_cluster) sub_cid_tids = subcam_list2(cid_tid_dict_new, cid_tids) sub_labels = dict() for i, sub_c_to_c in enumerate(sub_cid_tids): sim_matrix = get_sim_matrix( cid_tid_dict_new, sub_cid_tids[sub_c_to_c], use_ff=use_ff, use_rerank=use_rerank, use_st_filter=use_st_filter) cluster_labels = AgglomerativeClustering( n_clusters=None, distance_threshold=1 - 0.1, affinity='precomputed', linkage='complete').fit_predict(1 - sim_matrix) labels = get_match(cluster_labels) cluster_cid_tids = get_cid_tid(labels, sub_cid_tids[sub_c_to_c]) sub_labels[sub_c_to_c] = cluster_cid_tids labels, sub_cluster = combin_cluster(sub_labels, cid_tids) return labels