# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import division import os import cv2 import numpy as np from PIL import Image, ImageDraw from collections import deque def visualize_box_mask(im, results, labels, threshold=0.5): """ Args: im (str/np.ndarray): path of image/np.ndarray read by cv2 results (dict): include 'boxes': np.ndarray: shape:[N,6], N: number of box, matix element:[class, score, x_min, y_min, x_max, y_max] labels (list): labels:['class1', ..., 'classn'] threshold (float): Threshold of score. Returns: im (PIL.Image.Image): visualized image """ if isinstance(im, str): im = Image.open(im).convert('RGB') else: im = Image.fromarray(im) if 'boxes' in results and len(results['boxes']) > 0: im = draw_box(im, results['boxes'], labels, threshold=threshold) return im def get_color_map_list(num_classes): """ Args: num_classes (int): number of class Returns: color_map (list): RGB color list """ color_map = num_classes * [0, 0, 0] for i in range(0, num_classes): j = 0 lab = i while lab: color_map[i * 3] |= (((lab >> 0) & 1) << (7 - j)) color_map[i * 3 + 1] |= (((lab >> 1) & 1) << (7 - j)) color_map[i * 3 + 2] |= (((lab >> 2) & 1) << (7 - j)) j += 1 lab >>= 3 color_map = [color_map[i:i + 3] for i in range(0, len(color_map), 3)] return color_map def draw_box(im, np_boxes, labels, threshold=0.5): """ Args: im (PIL.Image.Image): PIL image np_boxes (np.ndarray): shape:[N,6], N: number of box, matix element:[class, score, x_min, y_min, x_max, y_max] labels (list): labels:['class1', ..., 'classn'] threshold (float): threshold of box Returns: im (PIL.Image.Image): visualized image """ draw_thickness = min(im.size) // 320 draw = ImageDraw.Draw(im) clsid2color = {} color_list = get_color_map_list(len(labels)) expect_boxes = (np_boxes[:, 1] > threshold) & (np_boxes[:, 0] > -1) np_boxes = np_boxes[expect_boxes, :] for dt in np_boxes: clsid, bbox, score = int(dt[0]), dt[2:], dt[1] if clsid not in clsid2color: clsid2color[clsid] = color_list[clsid] color = tuple(clsid2color[clsid]) if len(bbox) == 4: xmin, ymin, xmax, ymax = bbox print('class_id:{:d}, confidence:{:.4f}, left_top:[{:.2f},{:.2f}],' 'right_bottom:[{:.2f},{:.2f}]'.format( int(clsid), score, xmin, ymin, xmax, ymax)) # draw bbox draw.line( [(xmin, ymin), (xmin, ymax), (xmax, ymax), (xmax, ymin), (xmin, ymin)], width=draw_thickness, fill=color) elif len(bbox) == 8: x1, y1, x2, y2, x3, y3, x4, y4 = bbox draw.line( [(x1, y1), (x2, y2), (x3, y3), (x4, y4), (x1, y1)], width=2, fill=color) xmin = min(x1, x2, x3, x4) ymin = min(y1, y2, y3, y4) # draw label text = "{} {:.4f}".format(labels[clsid], score) tw, th = draw.textsize(text) draw.rectangle( [(xmin + 1, ymin - th), (xmin + tw + 1, ymin)], fill=color) draw.text((xmin + 1, ymin - th), text, fill=(255, 255, 255)) return im def get_color(idx): idx = idx * 3 color = ((37 * idx) % 255, (17 * idx) % 255, (29 * idx) % 255) return color def plot_tracking(image, tlwhs, obj_ids, scores=None, frame_id=0, fps=0., ids2names=[], do_entrance_counting=False, entrance=None): im = np.ascontiguousarray(np.copy(image)) im_h, im_w = im.shape[:2] text_scale = max(1, image.shape[1] / 1600.) text_thickness = 2 line_thickness = max(1, int(image.shape[1] / 500.)) cv2.putText( im, 'frame: %d fps: %.2f num: %d' % (frame_id, fps, len(tlwhs)), (0, int(15 * text_scale)), cv2.FONT_HERSHEY_PLAIN, text_scale, (0, 0, 255), thickness=2) for i, tlwh in enumerate(tlwhs): x1, y1, w, h = tlwh intbox = tuple(map(int, (x1, y1, x1 + w, y1 + h))) obj_id = int(obj_ids[i]) id_text = '{}'.format(int(obj_id)) if ids2names != []: assert len( ids2names) == 1, "plot_tracking only supports single classes." id_text = '{}_'.format(ids2names[0]) + id_text _line_thickness = 1 if obj_id <= 0 else line_thickness color = get_color(abs(obj_id)) cv2.rectangle( im, intbox[0:2], intbox[2:4], color=color, thickness=line_thickness) cv2.putText( im, id_text, (intbox[0], intbox[1] - 10), cv2.FONT_HERSHEY_PLAIN, text_scale, (0, 0, 255), thickness=text_thickness) if scores is not None: text = '{:.2f}'.format(float(scores[i])) cv2.putText( im, text, (intbox[0], intbox[1] + 10), cv2.FONT_HERSHEY_PLAIN, text_scale, (0, 255, 255), thickness=text_thickness) if do_entrance_counting: entrance_line = tuple(map(int, entrance)) cv2.rectangle( im, entrance_line[0:2], entrance_line[2:4], color=(0, 255, 255), thickness=line_thickness) return im def plot_tracking_dict(image, num_classes, tlwhs_dict, obj_ids_dict, scores_dict, frame_id=0, fps=0., ids2names=[], do_entrance_counting=False, entrance=None, records=None, center_traj=None): im = np.ascontiguousarray(np.copy(image)) im_h, im_w = im.shape[:2] text_scale = max(1, image.shape[1] / 1600.) text_thickness = 2 line_thickness = max(1, int(image.shape[1] / 500.)) if num_classes == 1: start = records[-1].find('Total') end = records[-1].find('In') cv2.putText( im, records[-1][start:end], (0, int(40 * text_scale)), cv2.FONT_HERSHEY_PLAIN, text_scale, (0, 0, 255), thickness=2) if num_classes == 1 and do_entrance_counting: entrance_line = tuple(map(int, entrance)) cv2.rectangle( im, entrance_line[0:2], entrance_line[2:4], color=(0, 255, 255), thickness=line_thickness) # find start location for entrance counting data start = records[-1].find('In') cv2.putText( im, records[-1][start:-1], (0, int(60 * text_scale)), cv2.FONT_HERSHEY_PLAIN, text_scale, (0, 0, 255), thickness=2) for cls_id in range(num_classes): tlwhs = tlwhs_dict[cls_id] obj_ids = obj_ids_dict[cls_id] scores = scores_dict[cls_id] cv2.putText( im, 'frame: %d fps: %.2f num: %d' % (frame_id, fps, len(tlwhs)), (0, int(15 * text_scale)), cv2.FONT_HERSHEY_PLAIN, text_scale, (0, 0, 255), thickness=2) record_id = set() for i, tlwh in enumerate(tlwhs): x1, y1, w, h = tlwh intbox = tuple(map(int, (x1, y1, x1 + w, y1 + h))) center = tuple(map(int, (x1 + w / 2., y1 + h / 2.))) obj_id = int(obj_ids[i]) if center_traj is not None: record_id.add(obj_id) if obj_id not in center_traj[cls_id]: center_traj[cls_id][obj_id] = deque(maxlen=30) center_traj[cls_id][obj_id].append(center) id_text = '{}'.format(int(obj_id)) if ids2names != []: id_text = '{}_{}'.format(ids2names[cls_id], id_text) else: id_text = 'class{}_{}'.format(cls_id, id_text) _line_thickness = 1 if obj_id <= 0 else line_thickness color = get_color(abs(obj_id)) cv2.rectangle( im, intbox[0:2], intbox[2:4], color=color, thickness=line_thickness) cv2.putText( im, id_text, (intbox[0], intbox[1] - 10), cv2.FONT_HERSHEY_PLAIN, text_scale, (0, 0, 255), thickness=text_thickness) if scores is not None: text = '{:.2f}'.format(float(scores[i])) cv2.putText( im, text, (intbox[0], intbox[1] + 10), cv2.FONT_HERSHEY_PLAIN, text_scale, (0, 255, 255), thickness=text_thickness) if center_traj is not None: for traj in center_traj: for i in traj.keys(): if i not in record_id: continue for point in traj[i]: cv2.circle(im, point, 3, (0, 0, 255), -1) return im