# Vision Transformer Detection ## Introduction - [Context Autoencoder for Self-Supervised Representation Learning](https://arxiv.org/abs/2202.03026) - [Benchmarking Detection Transfer Learning with Vision Transformers](https://arxiv.org/pdf/2111.11429.pdf) Object detection is a central downstream task used to test if pre-trained network parameters confer benefits, such as improved accuracy or training speed. The complexity of object detection methods can make this benchmarking non-trivial when new architectures, such as Vision Transformer (ViT) models, arrive. ## Model Zoo | Backbone | Pretrained | Model | Scheduler | Images/GPU | Box AP | Config | Download | |:------:|:--------:|:--------------:|:--------------:|:--------------:|:------:|:------:|:--------:| | ViT-base | CAE | Cascade RCNN | 1x | 1 | 52.7 | [config](./cascade_rcnn_vit_base_hrfpn_cae_1x_coco.yml) | [model](https://bj.bcebos.com/v1/paddledet/models/cascade_rcnn_vit_base_hrfpn_cae_1x_coco.pdparams) | | ViT-large | CAE | Cascade RCNN | 1x | 1 | 55.7 | [config](./cascade_rcnn_vit_large_hrfpn_cae_1x_coco.yml) | [model](https://bj.bcebos.com/v1/paddledet/models/cascade_rcnn_vit_large_hrfpn_cae_1x_coco.pdparams) | **Notes:** - Model is trained on COCO train2017 dataset and evaluated on val2017 results of `mAP(IoU=0.5:0.95) - Base model is trained on 8x32G V100 GPU, large model on 8x80G A100 - The above experiments are based on PaddlePaddle 2.2.2 ## Citations ``` @article{chen2022context, title={Context autoencoder for self-supervised representation learning}, author={Chen, Xiaokang and Ding, Mingyu and Wang, Xiaodi and Xin, Ying and Mo, Shentong and Wang, Yunhao and Han, Shumin and Luo, Ping and Zeng, Gang and Wang, Jingdong}, journal={arXiv preprint arXiv:2202.03026}, year={2022} } @article{DBLP:journals/corr/abs-2111-11429, author = {Yanghao Li and Saining Xie and Xinlei Chen and Piotr Doll{\'{a}}r and Kaiming He and Ross B. Girshick}, title = {Benchmarking Detection Transfer Learning with Vision Transformers}, journal = {CoRR}, volume = {abs/2111.11429}, year = {2021}, url = {https://arxiv.org/abs/2111.11429}, eprinttype = {arXiv}, eprint = {2111.11429}, timestamp = {Fri, 26 Nov 2021 13:48:43 +0100}, biburl = {https://dblp.org/rec/journals/corr/abs-2111-11429.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } @article{Cai_2019, title={Cascade R-CNN: High Quality Object Detection and Instance Segmentation}, ISSN={1939-3539}, url={http://dx.doi.org/10.1109/tpami.2019.2956516}, DOI={10.1109/tpami.2019.2956516}, journal={IEEE Transactions on Pattern Analysis and Machine Intelligence}, publisher={Institute of Electrical and Electronics Engineers (IEEE)}, author={Cai, Zhaowei and Vasconcelos, Nuno}, year={2019}, pages={1–1} } ```