from __future__ import division import paddle import paddle.nn as nn import paddle.nn.functional as F from paddle import ParamAttr from paddle.regularizer import L2Decay from paddle.nn import Conv2D, MaxPool2D from ppdet.core.workspace import register, serializable __all__ = ['VGG'] VGG_cfg = {16: [2, 2, 3, 3, 3], 19: [2, 2, 4, 4, 4]} class ConvBlock(nn.Layer): def __init__(self, in_channels, out_channels, groups, pool_size=2, pool_stride=2, pool_padding=0, name=None): super(ConvBlock, self).__init__() self.groups = groups self.conv0 = nn.Conv2D( in_channels=in_channels, out_channels=out_channels, kernel_size=3, stride=1, padding=1, weight_attr=ParamAttr(name=name + "1_weights"), bias_attr=ParamAttr(name=name + "1_bias")) self.conv_out_list = [] for i in range(1, groups): conv_out = self.add_sublayer( 'conv{}'.format(i), Conv2D( in_channels=out_channels, out_channels=out_channels, kernel_size=3, stride=1, padding=1, weight_attr=ParamAttr( name=name + "{}_weights".format(i + 1)), bias_attr=ParamAttr(name=name + "{}_bias".format(i + 1)))) self.conv_out_list.append(conv_out) self.pool = MaxPool2D( kernel_size=pool_size, stride=pool_stride, padding=pool_padding, ceil_mode=True) def forward(self, inputs): out = self.conv0(inputs) out = F.relu(out) for conv_i in self.conv_out_list: out = conv_i(out) out = F.relu(out) pool = self.pool(out) return out, pool class ExtraBlock(nn.Layer): def __init__(self, in_channels, mid_channels, out_channels, padding, stride, kernel_size, name=None): super(ExtraBlock, self).__init__() self.conv0 = Conv2D( in_channels=in_channels, out_channels=mid_channels, kernel_size=1, stride=1, padding=0) self.conv1 = Conv2D( in_channels=mid_channels, out_channels=out_channels, kernel_size=kernel_size, stride=stride, padding=padding) def forward(self, inputs): out = self.conv0(inputs) out = F.relu(out) out = self.conv1(out) out = F.relu(out) return out class L2NormScale(nn.Layer): def __init__(self, num_channels, scale=1.0): super(L2NormScale, self).__init__() self.scale = self.create_parameter( attr=ParamAttr(initializer=paddle.nn.initializer.Constant(scale)), shape=[num_channels]) def forward(self, inputs): out = F.normalize(inputs, axis=1, epsilon=1e-10) # out = self.scale.unsqueeze(0).unsqueeze(2).unsqueeze(3).expand_as( # out) * out out = self.scale.unsqueeze(0).unsqueeze(2).unsqueeze(3) * out return out @register @serializable class VGG(nn.Layer): def __init__(self, depth=16, normalizations=[20., -1, -1, -1, -1, -1], extra_block_filters=[[256, 512, 1, 2, 3], [128, 256, 1, 2, 3], [128, 256, 0, 1, 3], [128, 256, 0, 1, 3]]): super(VGG, self).__init__() assert depth in [16, 19], \ "depth as 16/19 supported currently, but got {}".format(depth) self.depth = depth self.groups = VGG_cfg[depth] self.normalizations = normalizations self.extra_block_filters = extra_block_filters self.conv_block_0 = ConvBlock( 3, 64, self.groups[0], 2, 2, 0, name="conv1_") self.conv_block_1 = ConvBlock( 64, 128, self.groups[1], 2, 2, 0, name="conv2_") self.conv_block_2 = ConvBlock( 128, 256, self.groups[2], 2, 2, 0, name="conv3_") self.conv_block_3 = ConvBlock( 256, 512, self.groups[3], 2, 2, 0, name="conv4_") self.conv_block_4 = ConvBlock( 512, 512, self.groups[4], 3, 1, 1, name="conv5_") self.fc6 = Conv2D( in_channels=512, out_channels=1024, kernel_size=3, stride=1, padding=6, dilation=6) self.fc7 = Conv2D( in_channels=1024, out_channels=1024, kernel_size=1, stride=1, padding=0) # extra block self.extra_convs = [] last_channels = 1024 for i, v in enumerate(self.extra_block_filters): assert len(v) == 5, "extra_block_filters size not fix" extra_conv = self.add_sublayer("conv{}".format(6 + i), ExtraBlock(last_channels, v[0], v[1], v[2], v[3], v[4])) last_channels = v[1] self.extra_convs.append(extra_conv) self.norms = [] for i, n in enumerate(self.normalizations): if n != -1: norm = self.add_sublayer("norm{}".format(i), L2NormScale( self.extra_block_filters[i][1], n)) else: norm = None self.norms.append(norm) def forward(self, inputs): outputs = [] conv, pool = self.conv_block_0(inputs['image']) conv, pool = self.conv_block_1(pool) conv, pool = self.conv_block_2(pool) conv, pool = self.conv_block_3(pool) outputs.append(conv) conv, pool = self.conv_block_4(pool) out = self.fc6(pool) out = F.relu(out) out = self.fc7(out) out = F.relu(out) outputs.append(out) if not self.extra_block_filters: return out # extra block for extra_conv in self.extra_convs: out = extra_conv(out) outputs.append(out) for i, n in enumerate(self.normalizations): if n != -1: outputs[i] = self.norms[i](outputs[i]) return outputs