# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import datetime import paddle from paddle.distributed import ParallelEnv from ppdet.utils.checkpoint import save_model from ppdet.optimizer import ModelEMA from ppdet.utils.logger import setup_logger logger = setup_logger(__name__) __all__ = ['Callback', 'ComposeCallback', 'LogPrinter', 'Checkpointer'] class Callback(object): def __init__(self, model): self.model = model def on_step_begin(self, status): pass def on_step_end(self, status): pass def on_epoch_begin(self, status): pass def on_epoch_end(self, status): pass class ComposeCallback(object): def __init__(self, callbacks): callbacks = [h for h in list(callbacks) if h is not None] for h in callbacks: assert isinstance(h, Callback), "hook shoule be subclass of Callback" self._callbacks = callbacks def on_step_begin(self, status): for h in self._callbacks: h.on_step_begin(status) def on_step_end(self, status): for h in self._callbacks: h.on_step_end(status) def on_epoch_begin(self, status): for h in self._callbacks: h.on_epoch_begin(status) def on_epoch_end(self, status): for h in self._callbacks: h.on_epoch_end(status) class LogPrinter(Callback): def __init__(self, model): super(LogPrinter, self).__init__(model) def on_step_end(self, status): if ParallelEnv().nranks < 2 or ParallelEnv().local_rank == 0: mode = status['mode'] if mode == 'train': epoch_id = status['epoch_id'] step_id = status['step_id'] steps_per_epoch = status['steps_per_epoch'] training_staus = status['training_staus'] batch_time = status['batch_time'] data_time = status['data_time'] epoches = self.model.cfg.epoch batch_size = self.model.cfg['{}Reader'.format(mode.capitalize( ))]['batch_size'] logs = training_staus.log() space_fmt = ':' + str(len(str(steps_per_epoch))) + 'd' if step_id % self.model.cfg.log_iter == 0: eta_steps = (epoches - epoch_id) * steps_per_epoch - step_id eta_sec = eta_steps * batch_time.global_avg eta_str = str(datetime.timedelta(seconds=int(eta_sec))) ips = float(batch_size) / batch_time.avg fmt = ' '.join([ 'Epoch: [{}]', '[{' + space_fmt + '}/{}]', 'learning_rate: {lr:.6f}', '{meters}', 'eta: {eta}', 'batch_cost: {btime}', 'data_cost: {dtime}', 'ips: {ips:.4f} images/s', ]) fmt = fmt.format( epoch_id, step_id, steps_per_epoch, lr=status['learning_rate'], meters=logs, eta=eta_str, btime=str(batch_time), dtime=str(data_time), ips=ips) logger.info(fmt) if mode == 'eval': step_id = status['step_id'] if step_id % 100 == 0: logger.info("Eval iter: {}".format(step_id)) def on_epoch_end(self, status): if ParallelEnv().nranks < 2 or ParallelEnv().local_rank == 0: mode = status['mode'] if mode == 'eval': sample_num = status['sample_num'] cost_time = status['cost_time'] logger.info('Total sample number: {}, averge FPS: {}'.format( sample_num, sample_num / cost_time)) class Checkpointer(Callback): def __init__(self, model): super(Checkpointer, self).__init__(model) cfg = self.model.cfg self.use_ema = ('use_ema' in cfg and cfg['use_ema']) if self.use_ema: self.ema = ModelEMA( cfg['ema_decay'], self.model.model, use_thres_step=True) def on_step_end(self, status): if self.use_ema: self.ema.update(self.model.model) def on_epoch_end(self, status): # Checkpointer only performed during training mode = status['mode'] if mode != 'train': return if ParallelEnv().nranks < 2 or ParallelEnv().local_rank == 0: epoch_id = status['epoch_id'] end_epoch = self.model.cfg.epoch if epoch_id % self.model.cfg.snapshot_epoch == 0 or epoch_id == end_epoch - 1: save_dir = os.path.join(self.model.cfg.save_dir, self.model.cfg.filename) save_name = str( epoch_id) if epoch_id != end_epoch - 1 else "model_final" if self.use_ema: state_dict = self.ema.apply() save_model(state_dict, self.model.optimizer, save_dir, save_name, epoch_id + 1) else: save_model(self.model.model, self.model.optimizer, save_dir, save_name, epoch_id + 1)