/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include "paddle/fluid/framework/parallel_executor.h" #include "ThreadPool.h" #include "lod_tensor.h" #include "op_registry.h" #include "paddle/fluid/framework/details/fetch_op_handle.h" #include "paddle/fluid/framework/details/multi_devices_graph_builder.h" #include "paddle/fluid/framework/details/ssa_graph.h" #include "paddle/fluid/platform/nccl_helper.h" namespace paddle { namespace framework { using details::DummyVarHandle; using details::FetchOpHandle; using details::OpHandleBase; using details::SSAGraph; using details::VarHandleBase; class SSAGraphExecutor { DISABLE_COPY_AND_ASSIGN(SSAGraphExecutor); public: // Steal graph inside explicit SSAGraphExecutor(std::unique_ptr &&graph) : graph_(std::move(graph)) {} virtual ~SSAGraphExecutor() {} virtual FeedFetchList Run(const std::vector &fetch_tensors) = 0; protected: std::unique_ptr graph_; }; class ThreadedSSAGraphExecutor : public SSAGraphExecutor { public: ThreadedSSAGraphExecutor(size_t num_threads, bool use_event, const std::vector &local_scopes, const std::vector &places, std::unique_ptr &&graph) : SSAGraphExecutor(std::move(graph)), pool_(num_threads >= 2 ? new ::ThreadPool(num_threads) : nullptr), local_scopes_(local_scopes), places_(places), fetch_ctxs_(places), use_event_(use_event) {} // Run a SSAGraph by a thread pool // Use topological sort algorithm FeedFetchList Run(const std::vector &fetch_tensors) override { std::unordered_map pending_ops; std::unordered_map> pending_vars; std::unordered_set ready_ops; auto InsertPendingVar = [&pending_vars](VarHandleBase &var) { pending_vars[&var] = var.generated_op_ == nullptr; }; auto InsertPendingOp = [&pending_ops](OpHandleBase &op_instance) { pending_ops.insert({&op_instance, op_instance.inputs_.size()}); }; // Transform SSAGraph to pending_ops & pending_vars for (auto &var_map : graph_->vars_) { for (auto &name_pair : var_map) { for (auto &version_pair : name_pair.second) { InsertPendingVar(version_pair.second); } } } for (auto &var : graph_->dep_vars_) { InsertPendingVar(*var); } for (auto &op : graph_->ops_) { if (op->inputs_.empty()) { // Special case, Op has no input. ready_ops.insert(op.get()); } else { InsertPendingOp(*op); } } // Step 2. Insert FetchOps std::vector fetch_ops; std::vector dummy_vars; FeedFetchList fetch_data(fetch_tensors.size()); std::unordered_map> fetched_vars; for (auto &fetch_var_name : fetch_tensors) { for (auto &var_map : graph_->vars_) { auto it = var_map.find(fetch_var_name); if (it != var_map.end()) { fetched_vars[fetch_var_name].push_back(&it->second.rbegin()->second); } } } for (size_t i = 0; i < fetch_tensors.size(); ++i) { auto &var_name = fetch_tensors[i]; auto &vars = fetched_vars[var_name]; fetch_ops.emplace_back(&fetch_data, i, &local_scopes_); details::FetchOpHandle *op = &fetch_ops.back(); // FIXME: Use new device context for (auto &p : places_) { op->dev_ctx_[p] = fetch_ctxs_.Get(p); } for (auto *var : vars) { op->AddInput(var); } dummy_vars.emplace_back(); auto *var = &dummy_vars.back(); var->generated_op_ = nullptr; op->AddOutput(var); InsertPendingVar(*var); InsertPendingOp(*op); } auto run_all_ready_ops = [&] { for (auto *op : ready_ops) { RunOp(pending_vars, op); } ready_ops.clear(); }; // Step 3. Execution while (!pending_vars.empty()) { // 1. Run All Ready ops run_all_ready_ops(); // 2. Find ready variable VarHandleBase *ready_var = nullptr; for (auto &pair : pending_vars) { if (pair.second.load(std::memory_order_acquire)) { ready_var = pair.first; break; } } // if there is no variable ready if (ready_var == nullptr) { // FIXME use conditional var instead of busy wait. // if there is an exception, throw it if (exception_) { throw * exception_; } // keep waiting the ready variables continue; } // 3. Remove the dependency of ready_var. // Find the ready_ops after the ready_var. pending_vars.erase(ready_var); for (auto *op : ready_var->pending_ops_) { auto &deps = pending_ops[op]; --deps; if (deps == 0) { ready_ops.insert(op); } } // Keep loop until all vars are ready. } // Wait FetchOps. for (auto &fetch_op : fetch_ops) { fetch_op.WaitAndMergeCPUTensors(); } return fetch_data; } ~ThreadedSSAGraphExecutor() {} private: void RunOp( std::unordered_map> &pending_vars, details::OpHandleBase *op) { std::vector *> *ready_buffer = new std::vector *>(); for (auto *var : op->outputs_) { ready_buffer->emplace_back(&pending_vars[var]); } auto op_run = [ready_buffer, op, this] { try { VLOG(10) << op->DebugString(); op->Run(use_event_); for (auto *ready : *ready_buffer) { ready->store(true, std::memory_order_release); } delete ready_buffer; } catch (platform::EnforceNotMet ex) { exception_.reset(new platform::EnforceNotMet(ex)); } catch (...) { LOG(FATAL) << "Unknown exception catched"; } }; if (pool_) { pool_->enqueue(op_run); } else { op_run(); } } private: std::unique_ptr<::ThreadPool> pool_; std::vector local_scopes_; std::vector places_; platform::DeviceContextPool fetch_ctxs_; const bool use_event_; std::unique_ptr exception_; }; class ParallelExecutorPrivate { public: explicit ParallelExecutorPrivate(const std::vector &places) : places_(places), fetch_dev_ctxs_(places) {} std::vector places_; platform::DeviceContextPool fetch_dev_ctxs_; std::vector local_scopes_; Scope *global_scope_; std::unique_ptr nccl_ctxs_; std::unique_ptr executor_; }; ParallelExecutor::ParallelExecutor( size_t num_threads, const std::vector &places, const std::unordered_set ¶ms, const ProgramDesc &startup_program, const ProgramDesc &main_program, const std::string &loss_var_name, Scope *scope) : member_(new ParallelExecutorPrivate(places)) { member_->global_scope_ = scope; // Step 1. RunStartupProgram and Bcast the params to devs. Executor exe(places[0]); exe.Run(startup_program, scope, 0); // Create local scopes for (size_t i = 0; i < member_->places_.size(); ++i) { member_->local_scopes_.push_back(&scope->NewScope()); } // Bcast Parameters to all GPUs BuildNCCLCommunicator(); if (platform::is_gpu_place(places[0]) && member_->local_scopes_.size() != 1) { // Is CUDA BCastParamsToGPUs(startup_program); } // Startup Program has been run. All local scopes has correct parameters. // Step 2. Convert main_program to SSA form and dependency graph. Also, insert // ncclOp details::MultiDevSSAGraphBuilder builder(member_->places_, loss_var_name, params, member_->local_scopes_, member_->nccl_ctxs_.get()); auto graph = builder.Build(main_program); member_->executor_.reset(new ThreadedSSAGraphExecutor( num_threads, true, member_->local_scopes_, places, std::move(graph))); // Step 3. Create vars in each scope; for (auto *scope : member_->local_scopes_) { for (auto *var : main_program.Block(0).AllVars()) { if (scope->FindVar(var->Name()) != nullptr) { continue; } InitializeVariable(scope->Var(var->Name()), var->GetType()); } } } void ParallelExecutor::BCastParamsToGPUs( const ProgramDesc &startup_program) const { #ifdef PADDLE_WITH_CUDA auto *main_scope = member_->local_scopes_[0]; for (auto *var_desc : startup_program.Block(0).AllVars()) { if (var_desc->GetType() == proto::VarType::LOD_TENSOR) { auto &main_tensor = main_scope->FindVar(var_desc->Name())->Get(); ncclDataType_t data_type = platform::ToNCCLDataType(main_tensor.type()); auto &dims = main_tensor.dims(); size_t numel = main_tensor.numel(); platform::NCCLGroupGuard guard; for (size_t i = 0; i < member_->places_.size(); ++i) { auto place = member_->places_[i]; void *buffer; if (i == 0) { buffer = const_cast(main_tensor.data()); } else { auto local_scope = member_->local_scopes_[i]; auto *t = local_scope->Var(var_desc->Name())->GetMutable(); t->Resize(dims); buffer = t->mutable_data(place, main_tensor.type()); } auto &nccl_ctx = member_->nccl_ctxs_->at(place); platform::dynload::ncclBcast(buffer, numel, data_type, 0, nccl_ctx.comm_, nccl_ctx.stream()); } } member_->nccl_ctxs_->WaitAll(); } #else PADDLE_THROW("Not compiled with CUDA"); #endif } void ParallelExecutor::BuildNCCLCommunicator() const { #ifdef PADDLE_WITH_CUDA member_->nccl_ctxs_.reset(new platform::NCCLContextMap(member_->places_)); #endif } void ParallelExecutor::Run(const std::vector &fetch_tensors, const std::string &fetched_var_name) { auto fetch_data = member_->executor_->Run(fetch_tensors); *member_->global_scope_->Var(fetched_var_name)->GetMutable() = fetch_data; } } // namespace framework } // namespace paddle