/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include "paddle/fluid/framework/executor.h" #include "paddle/fluid/framework/channel.h" #include "paddle/fluid/framework/feed_fetch_method.h" #include "paddle/fluid/framework/lod_rank_table.h" #include "paddle/fluid/framework/lod_tensor_array.h" #include "paddle/fluid/framework/op_registry.h" #include "paddle/fluid/framework/reader.h" #include "paddle/fluid/operators/detail/macros.h" #include "paddle/fluid/platform/place.h" #include "paddle/fluid/platform/profiler.h" DECLARE_bool(benchmark); DEFINE_bool(use_mkldnn, false, "Use MKLDNN to run"); namespace paddle { namespace framework { namespace { // block id starts from 0. This id is used to represent the codeblock // wrapping the first block 0. int kProgramId = -1; } // namespace ExecutorPrepareContext::ExecutorPrepareContext( const framework::ProgramDesc& prog, size_t block_id) : prog_(prog), block_id_(block_id) {} ExecutorPrepareContext::~ExecutorPrepareContext() { VLOG(5) << "destroy ExecutorPrepareContext"; } Executor::Executor(const platform::Place& place) : place_(place) {} void Executor::Close() { #ifdef PADDLE_WITH_DISTRIBUTE ::paddle::operators::distributed::RPCClient::GetInstance< ::paddle::operators::distributed::GRPCClient>() ->SendComplete(); #endif } void InitializeVariable(Variable* var, proto::VarType::Type var_type) { if (var_type == proto::VarType::LOD_TENSOR) { var->GetMutable(); } else if (var_type == proto::VarType::SELECTED_ROWS) { var->GetMutable(); } else if (var_type == proto::VarType::FEED_MINIBATCH) { var->GetMutable(); } else if (var_type == proto::VarType::FETCH_LIST) { var->GetMutable(); } else if (var_type == proto::VarType::STEP_SCOPES) { var->GetMutable>(); } else if (var_type == proto::VarType::LOD_RANK_TABLE) { var->GetMutable(); } else if (var_type == proto::VarType::LOD_TENSOR_ARRAY) { var->GetMutable(); } else if (var_type == proto::VarType::PLACE_LIST) { var->GetMutable(); } else if (var_type == proto::VarType::READER) { var->GetMutable(); } else if (var_type == proto::VarType::CHANNEL) { var->GetMutable(); } else if (var_type == proto::VarType::RAW) { // GetMutable will be called in operator } else { PADDLE_THROW( "Variable type %d is not in " "[LOD_TENSOR, SELECTED_ROWS, FEED_MINIBATCH, FETCH_LIST, " "LOD_RANK_TABLE, PLACE_LIST, READER, CHANNEL, RAW]", var_type); } } void Executor::CreateVariables(const ProgramDesc& pdesc, Scope* scope, int block_id) { auto& global_block = pdesc.Block(block_id); const Scope* ancestor_scope = scope; while (ancestor_scope->parent()) { ancestor_scope = ancestor_scope->parent(); } if (ancestor_scope != scope) { for (auto& var : global_block.AllVars()) { if (var->Name() == framework::kEmptyVarName) { continue; } if (var->Persistable()) { auto* ptr = const_cast(ancestor_scope)->Var(var->Name()); InitializeVariable(ptr, var->GetType()); VLOG(3) << "Create Variable " << var->Name() << " global, which pointer is " << ptr; } else { auto* ptr = scope->Var(var->Name()); InitializeVariable(ptr, var->GetType()); VLOG(3) << "Create Variable " << var->Name() << " locally, which pointer is " << ptr; } } } else { for (auto& var : global_block.AllVars()) { auto* ptr = scope->Var(var->Name()); InitializeVariable(ptr, var->GetType()); VLOG(3) << "Create variable " << var->Name() << ", which pointer is " << ptr; } } } void Executor::Run(const ProgramDesc& pdesc, Scope* scope, int block_id, bool create_local_scope, bool create_vars) { platform::RecordBlock b(block_id); if (FLAGS_use_mkldnn) EnableMKLDNN(pdesc); auto ctx = Prepare(pdesc, block_id); RunPreparedContext(ctx.get(), scope, create_local_scope, create_vars); } // Check whether the block already has feed operators and feed_holder. // Return false if the block does not have any feed operators. // If some feed operators have been prepended to the block, check that // the info contained in these feed operators matches the feed_targets // and feed_holder_name. Raise exception when any mismatch is found. // Return true if the block has feed operators and holder of matching info. static bool has_feed_operators( const BlockDesc& block, const std::map& feed_targets, const std::string& feed_holder_name) { size_t feed_count = 0; for (auto* op : block.AllOps()) { if (op->Type() == kFeedOpType) { feed_count++; // The input variable's name of feed_op should be feed_holder_name. PADDLE_ENFORCE_EQ(op->Input("X")[0], feed_holder_name, "Input to feed op should be '%s'", feed_holder_name); std::string feed_target_name = op->Output("Out")[0]; PADDLE_ENFORCE( feed_targets.find(feed_target_name) != feed_targets.end(), "Feed operator output name '%s' cannot be found in 'feed_targets'", feed_target_name); } } if (feed_count > 0) { PADDLE_ENFORCE_EQ( feed_count, feed_targets.size(), "The number of feed operators should match 'feed_targets'"); if (!feed_holder_name.empty()) { // When feed operator are present, so should be feed_holder. auto var = block.FindVar(feed_holder_name); PADDLE_ENFORCE_NOT_NULL(var, "Block should already have a '%s' variable", feed_holder_name); PADDLE_ENFORCE_EQ(var->GetType(), proto::VarType::FEED_MINIBATCH, "'%s' variable should be 'FEED_MINIBATCH' type", feed_holder_name); } } return feed_count > 0; } // Check whether the block already has fetch operators and fetch_holder. // Return false if the block does not have any fetch operators. // If some fetch operators have been appended to the block, check that // the info contained in these fetch operators matches the fetch_targets // and fetch_holder_name. Raise exception when any mismatch is found. // Return true if the block has fetch operators and holder of matching info. static bool has_fetch_operators( const BlockDesc& block, const std::map& fetch_targets, const std::string& fetch_holder_name) { size_t fetch_count = 0; for (auto* op : block.AllOps()) { if (op->Type() == kFetchOpType) { fetch_count++; // The output variable's name of fetch_op should be fetch_holder_name. PADDLE_ENFORCE_EQ(op->Output("Out")[0], fetch_holder_name, "Output of fetch op should be '%s'", fetch_holder_name); std::string fetch_target_name = op->Input("X")[0]; PADDLE_ENFORCE( fetch_targets.find(fetch_target_name) != fetch_targets.end(), "Fetch operator input name '%s' cannot be found in 'fetch_targets'", fetch_target_name); } } if (fetch_count > 0) { PADDLE_ENFORCE_EQ( fetch_count, fetch_targets.size(), "The number of fetch operators should match 'fetch_targets'"); if (!fetch_holder_name.empty()) { // When fetch operator are present, so should be fetch_holder. auto var = block.FindVar(fetch_holder_name); PADDLE_ENFORCE_NOT_NULL(var, "Block should already have a '%s' variable", fetch_holder_name); PADDLE_ENFORCE_EQ(var->GetType(), proto::VarType::FETCH_LIST, "'%s' variable should be 'FETCH_LIST' type", fetch_holder_name); } } return fetch_count > 0; } void Executor::Run(const ProgramDesc& program, Scope* scope, std::map* feed_targets, std::map* fetch_targets, bool create_local_scope, bool create_vars, const std::string& feed_holder_name, const std::string& fetch_holder_name) { platform::RecordBlock b(kProgramId); if (FLAGS_use_mkldnn) EnableMKLDNN(program); bool has_feed_ops = has_feed_operators(program.Block(0), *feed_targets, feed_holder_name); bool has_fetch_ops = has_fetch_operators(program.Block(0), *fetch_targets, fetch_holder_name); ProgramDesc* copy_program = const_cast(&program); std::unique_ptr unique_ptr_of_copy_program; if (!has_feed_ops || !has_fetch_ops) { unique_ptr_of_copy_program.reset(new ProgramDesc(program)); copy_program = unique_ptr_of_copy_program.get(); } auto* global_block = copy_program->MutableBlock(0); if (!has_feed_ops) { // create feed_holder variable auto* feed_holder = global_block->Var(feed_holder_name); feed_holder->SetType(proto::VarType::FEED_MINIBATCH); feed_holder->SetPersistable(true); int i = 0; for (auto& feed_target : (*feed_targets)) { std::string var_name = feed_target.first; VLOG(3) << "feed target's name: " << var_name; // prepend feed op auto* op = global_block->PrependOp(); op->SetType(kFeedOpType); op->SetInput("X", {feed_holder_name}); op->SetOutput("Out", {var_name}); op->SetAttr("col", {static_cast(i)}); op->CheckAttrs(); i++; } } if (!has_fetch_ops) { // create fetch_holder variable auto* fetch_holder = global_block->Var(fetch_holder_name); fetch_holder->SetType(proto::VarType::FETCH_LIST); fetch_holder->SetPersistable(true); int i = 0; for (auto& fetch_target : (*fetch_targets)) { std::string var_name = fetch_target.first; VLOG(3) << "fetch target's name: " << var_name; // append fetch op auto* op = global_block->AppendOp(); op->SetType(kFetchOpType); op->SetInput("X", {var_name}); op->SetOutput("Out", {fetch_holder_name}); op->SetAttr("col", {static_cast(i)}); op->CheckAttrs(); i++; } } auto ctx = Prepare(*copy_program, 0); RunPreparedContext(ctx.get(), scope, feed_targets, fetch_targets, create_local_scope, create_vars, feed_holder_name, fetch_holder_name); } std::unique_ptr Executor::Prepare( const ProgramDesc& program, int block_id) { VLOG(3) << "before create prepare" << block_id << " " << program.Size(); std::unique_ptr ctx( new ExecutorPrepareContext(program, block_id)); VLOG(3) << "after create prepare"; // PADDLE_ENFORCE_LT(static_cast(block_id), program.Size()); VLOG(3) << "before create op_desc"; auto& block = program.Block(block_id); VLOG(3) << "create before" << ctx->ops_.size() << " " << block.AllOps().size(); int counter = 0; for (auto& op_desc : block.AllOps()) { ctx->ops_.push_back(OpRegistry::CreateOp(*op_desc)); VLOG(3) << "create op " << "index " << ++counter << " type " << op_desc->Type(); } VLOG(3) << "create finished" << ctx->ops_.size() << " " << block.AllOps().size(); return ctx; } std::vector> Executor::Prepare( const ProgramDesc& program, const std::vector& block_ids) { VLOG(3) << "inside prepare"; std::vector> result; VLOG(3) << "before go through block_ids"; for (auto& bid : block_ids) { VLOG(3) << "block id" << bid; auto* ctx = new ExecutorPrepareContext(program, bid); //PADDLE_ENFORCE_LT(static_cast(bid), program.Size()); auto& block = program.Block(bid); int counter = 0; VLOG(3) << "create before" << ctx->ops_.size() << " " << block.AllOps().size(); for (auto& op_desc : block.AllOps()) { ctx->ops_.push_back(OpRegistry::CreateOp(*op_desc)); VLOG(3) << "create op " << "index " << ++counter << " type " << op_desc->Type(); } VLOG(3) << "create finished" << ctx->ops_.size() << " " << block.AllOps().size(); result.push_back(std::shared_ptr(ctx)); } return result; } // void CheckResult(const std::string op_type, ExecutorPrepareContext* ctx, Scope* local_scope) { // VLOG(3) << "before checking result"; // auto& dev_ctx = *platform::DeviceContextPool::Instance().Get(place_); // std::vector outputs; // auto& block = ctx->prog_.Block(0); // bool found = false; // framework::OpDesc* myop = nullptr; // for(auto& op : block.AllOps()) { // if(op->Type() == "load_combine" || op->Type() == "fetch" || op->Type() == "feed") return; // if (op->Type() == op_type) { // found = true; // myop = op; // break; // } // } // } // if(!found) { // VLOG(3) << "not found op!"; // return; // } // auto* op = myop; // VLOG(3) << "start op output" << op->Type(); // for(auto var_name: op->OutputArgumentNames()) { // auto* var = local_scope->Var(var_name); // auto* var_desc = block.FindVar(var_name); // if (var_desc->Persistable()) continue; // auto* tensor = var->GetMutable(); // framework::Tensor check; // VLOG(3) << "before tensor copy"; // framework::TensorCopy(*tensor, platform::CPUPlace(), dev_ctx, &check); // VLOG(3) << "after tensor copy"; // float sum = .0; // for(size_t i=0; i < check.numel(); ++i) { // sum += check.data()[i]; // } // VLOG(3) << "op " << op->Type() << " output var " << var_name << " sum " << sum; // VLOG(3) << "after checking result"; // } void Executor::RunPreparedContext(ExecutorPrepareContext* ctx, Scope* scope, bool create_local_scope, bool create_vars, bool keep_kids) { VLOG(3) << "RunPreparedContext inside"; Scope* local_scope = scope; if (create_vars) { if (create_local_scope) { local_scope = &scope->NewScope(); } CreateVariables(ctx->prog_, local_scope, ctx->block_id_); } for (auto& op : ctx->ops_) { op->Run(*local_scope, place_); // CheckResult(op->Type(), ctx, local_scope); if (FLAGS_benchmark) { VLOG(2) << "Memory used after operator " + op->Type() + " running: " << memory::memory_usage(place_); } } platform::DeviceContextPool::Instance().Get(place_)->Wait(); VLOG(3) << "start checking"; auto& dev_ctx = *platform::DeviceContextPool::Instance().Get(place_); std::vector outputs; auto& block = ctx->prog_.Block(0); for(auto& op : block.AllOps()) { if(op->Type() == "load_combine" || op->Type() == "fetch" || op->Type() == "feed") continue; // for(auto& real_op : ctx->ops_) { // if(real_op->Type() == op->Type()) { // VLOG(3) << real_op->Type() << " " <DebugStringEx(local_scope); // } // } //VLOG(3) << "start op output" << op->Type(); for(auto var_name: op->InputArgumentNames()) { auto* var = local_scope->Var(var_name); auto* var_desc = block.FindVar(var_name); if (var_desc->Persistable()) continue; auto* tensor = var->GetMutable(); framework::Tensor check; VLOG(3) << "before tensor copy"; framework::TensorCopy(*tensor, platform::CPUPlace(), dev_ctx, &check); VLOG(3) << "after tensor copy"; float sum = .0; for(size_t i=0; i < check.numel(); ++i) { sum += check.data()[i]; } VLOG(3) << "op " << op->Type() << " input var " << var_name << " sum " << sum; } VLOG(3) << "op " << op->Type() << "input finished"; for(auto var_name: op->OutputArgumentNames()) { auto* var = local_scope->Var(var_name); auto* var_desc = block.FindVar(var_name); if (var_desc->Persistable()) continue; auto* tensor = var->GetMutable(); framework::Tensor check; VLOG(3) << "before tensor copy"; if(op->Type() == "batch_norm" && platform::is_gpu_place(place_)) { VLOG(3) << "op " << op->Type() << " output var " << var_name << " " << tensor->numel(); tensor->mutable_data(place_); framework::TensorCopy(*tensor, platform::CPUPlace(), dev_ctx, &check); } else { framework::TensorCopy(*tensor, platform::CPUPlace(), dev_ctx, &check); } VLOG(3) << "after tensor copy"; float sum = .0; for(size_t i=0; i < check.numel(); ++i) { sum += check.data()[i]; } VLOG(3) << "op " << op->Type() << " output var " << var_name << " sum " << sum; } } VLOG(3) << "after checking result"; if (local_scope != scope) { scope->DeleteScope(local_scope); } else { if (!keep_kids) { // By default, we should delete all kid scopes after run executor because // some operators may create local scope when running, such as while_op. // But when while_op also create a local executor to run it's sub block, // the sub scopes it created should not be dropped immediately, because // while_grad_op will use some variables created during while_op run, so // we need to keep the kids and wait for the outer executor to drop them. scope->DropKids(); } } if (FLAGS_benchmark) { VLOG(2) << "-------------------------------------------------------"; VLOG(2) << "Memory used after deleting local scope: " << memory::memory_usage(place_); VLOG(2) << "-------------------------------------------------------"; } } void Executor::RunPreparedContext( ExecutorPrepareContext* ctx, Scope* scope, std::map* feed_targets, std::map* fetch_targets, bool create_local_scope, bool create_vars, const std::string& feed_holder_name, const std::string& fetch_holder_name) { auto& global_block = ctx->prog_.Block(ctx->block_id_); PADDLE_ENFORCE( has_feed_operators(global_block, *feed_targets, feed_holder_name), "Program in ExecutorPrepareContext should has feed_ops."); PADDLE_ENFORCE( has_fetch_operators(global_block, *fetch_targets, fetch_holder_name), "Program in the prepared context should has fetch_ops."); // map the data of feed_targets to feed_holder for (auto* op : global_block.AllOps()) { if (op->Type() == kFeedOpType) { std::string feed_target_name = op->Output("Out")[0]; int idx = boost::get(op->GetAttr("col")); SetFeedVariable(scope, *(*feed_targets)[feed_target_name], feed_holder_name, idx); } } RunPreparedContext(ctx, scope, create_local_scope, create_vars); // obtain the data of fetch_targets from fetch_holder for (auto* op : global_block.AllOps()) { if (op->Type() == kFetchOpType) { std::string fetch_target_name = op->Input("X")[0]; int idx = boost::get(op->GetAttr("col")); *(*fetch_targets)[fetch_target_name] = GetFetchVariable(*scope, fetch_holder_name, idx); } } } void Executor::EnableMKLDNN(const ProgramDesc& program) { #ifdef PADDLE_WITH_MKLDNN VLOG(3) << "use_mkldnn=True"; for (size_t bid = 0; bid < program.Size(); ++bid) { auto* block = const_cast(program).MutableBlock(bid); for (auto* op : block->AllOps()) { if (op->HasAttr("use_mkldnn")) { op->SetAttr("use_mkldnn", true); } } } #else LOG(WARNING) << "'MKLDNN' is not supported, Please re-compile with WITH_MKLDNN option"; #endif } } // namespace framework } // namespace paddle