[English](QUICK_STARTED.md) | 简体中文 # 快速开始 为了使得用户能够在很短时间内快速产出模型,掌握PaddleDetection的使用方式,这篇教程通过一个预训练检测模型对小数据集进行finetune。在较短时间内即可产出一个效果不错的模型。实际业务中,建议用户根据需要选择合适模型配置文件进行适配。 ## 一、快速体验 ``` # 用PP-YOLO算法在COCO数据集上预训练模型预测一张图片 python tools/infer.py -c configs/ppyolo/ppyolo.yml -o use_gpu=true weights=https://paddlemodels.bj.bcebos.com/object_detection/ppyolo.pdparams --infer_img=demo/000000014439.jpg ``` 结果如下图: ![](../images/000000014439.jpg) ## 二、准备数据 数据集参考[Kaggle数据集](https://www.kaggle.com/andrewmvd/road-sign-detection) ,包含877张图像,数据类别4类:crosswalk,speedlimit,stop,trafficlight。 将数据划分为训练集701张图和测试集176张图,[下载链接](https://paddlemodels.bj.bcebos.com/object_detection/roadsign_voc.tar). ``` # 注意:可跳过这步下载,后面训练会自动下载 python dataset/roadsign_voc/download_roadsign_voc.py ``` ## 三、训练、评估、预测 ### 1、训练 ``` # 边训练边测试 CPU需要约1小时(use_gpu=false),1080Ti GPU需要约5分钟。 # -c 参数表示指定使用哪个配置文件 # -o 参数表示指定配置文件中的全局变量(覆盖配置文件中的设置),这里设置使用gpu, # --eval 参数表示边训练边评估,会自动保存一个评估结果最好的名为best_model.pdmodel的模型 python tools/train.py -c configs/yolov3_mobilenet_v1_roadsign.yml --eval -o use_gpu=true ``` 如果想通过VisualDL实时观察loss变化去去曲线,在训练命令种添加--use_vdl=true,以及通过--vdl_log_dir设置日志保存路径。 **但注意VisualDL需Python>=3.5** 首先安装[VisualDL](https://github.com/PaddlePaddle/VisualDL) ``` python -m pip install visualdl -i https://mirror.baidu.com/pypi/simple ``` ``` python -u tools/train.py -c configs/yolov3_mobilenet_v1_roadsign.yml \ --use_vdl=true \ --vdl_log_dir=vdl_dir/scalar \ --eval ``` 通过visualdl命令实时查看变化曲线: ``` visualdl --logdir vdl_dir/scalar/ --host --port ``` ### 2、评估 ``` # 评估 默认使用训练过程中保存的best_model # -c 参数表示指定使用哪个配置文件 # -o 参数表示指定配置文件中的全局变量(覆盖配置文件中的设置) python tools/eval.py -c configs/yolov3_mobilenet_v1_roadsign.yml -o use_gpu=true ``` ![](../images/visualdl_roadsign.png) ### 3、预测 ``` # -c 参数表示指定使用哪个配置文件 # -o 参数表示指定配置文件中的全局变量(覆盖配置文件中的设置) # --infer_img 参数指定预测图像路径 # 预测结束后会在output文件夹中生成一张画有预测结果的同名图像 python tools/infer.py -c configs/yolov3_mobilenet_v1_roadsign.yml -o use_gpu=true --infer_img=demo/road554.png ``` 结果如下图: ![](../images/road554.png)