## 服务器端实用目标检测方案 ### 简介 * 近年来,学术界和工业界广泛关注图像中目标检测任务。基于[PaddleClas](https://github.com/PaddlePaddle/PaddleClas)中SSLD蒸馏方案训练得到的ResNet50_vd预训练模型(ImageNet1k验证集上Top1 Acc为82.39%),结合PaddleDetection中的丰富算子,飞桨提供了一种面向服务器端实用的目标检测方案PSS-DET(Practical Server Side Detection)。基于COCO2017目标检测数据集,V100单卡预测速度为为61FPS时,COCO mAP可达41.6%;预测速度为20FPS时,COCO mAP可达47.8%。 * 以标准的Faster RCNN ResNet50_vd FPN为例,下表给出了PSS-DET不同的模块的速度与精度收益。 | Trick | Train scale | Test scale | COCO mAP | Infer speed/FPS | |- |:-: |:-: | :-: | :-: | | `baseline` | 640x640 | 640x640 | 36.4% | 43.589 | | +`test proposal=pre/post topk 500/300` | 640x640 | 640x640 | 36.2% | 52.512 | | +`fpn channel=64` | 640x640 | 640x640 | 35.1% | 67.450 | | +`ssld pretrain` | 640x640 | 640x640 | 36.3% | 67.450 | | +`ciou loss` | 640x640 | 640x640 | 37.1% | 67.450 | | +`DCNv2` | 640x640 | 640x640 | 39.4% | 60.345 | | +`3x, multi-scale training` | 640x640 | 640x640 | 41.0% | 60.345 | | +`auto augment` | 640x640 | 640x640 | 41.4% | 60.345 | | +`libra sampling` | 640x640 | 640x640 | 41.6% | 60.345 | 基于该实验结论,PaddleDetection结合Cascade RCNN,使用更大的训练与评估尺度(1000x1500),最终在单卡V100上速度为20FPS,COCO mAP达47.8%。下图给出了目前类似速度的目标检测方法的速度与精度指标。 ![pssdet](../../docs/images/pssdet.png) **注意** > 这里为了更方便地对比,统一将V100的预测耗时乘以1.2倍,近似转化为Titan V的预测耗时。 ### 模型库 | 骨架网络 | 网络类型 | 每张GPU图片个数 | 学习率策略 |推理时间(fps) | Box AP | Mask AP | 下载 | 配置文件 | | :---------------------- | :-------------: | :-------: | :-----: | :------------: | :----: | :-----: | :-------------: | :-----: | | ResNet50-vd-FPN-Dcnv2 | Faster | 2 | 3x | 61.425 | 41.6 | - | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_dcn_r50_vd_fpn_3x_server_side.tar) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/static/configs/rcnn_enhance/faster_rcnn_dcn_r50_vd_fpn_3x_server_side.yml) | | ResNet50-vd-FPN-Dcnv2 | Cascade Faster | 2 | 3x | 20.001 | 47.8 | - | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/cascade_rcnn_dcn_r50_vd_fpn_3x_server_side.tar) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/static/configs/rcnn_enhance/cascade_rcnn_dcn_r50_vd_fpn_3x_server_side.yml) | | ResNet101-vd-FPN-Dcnv2 | Cascade Faster | 2 | 3x | 19.523 | 49.4 | - | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/cascade_rcnn_dcn_r101_vd_fpn_3x_server_side.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/static/configs/rcnn_enhance/cascade_rcnn_dcn_r101_vd_fpn_3x_server_side.yml) | **注**:generic文件夹下面的配置文件对应的预训练模型均只支持预测,不支持训练与评估。