pretrain_weights: https://paddledet.bj.bcebos.com/models/mask_rcnn_r50_fpn_1x_coco.pdparams slim: QAT QAT: quant_config: { 'weight_quantize_type': 'channel_wise_abs_max', 'activation_quantize_type': 'moving_average_abs_max', 'weight_bits': 8, 'activation_bits': 8, 'dtype': 'int8', 'window_size': 10000, 'moving_rate': 0.9, 'quantizable_layer_type': ['Conv2D', 'Linear']} print_model: True epoch: 5 TrainReader: batch_size: 1 LearningRate: base_lr: 0.001 schedulers: - !PiecewiseDecay gamma: 0.1 milestones: [3, 4] - !LinearWarmup start_factor: 0.001 steps: 100